CC BY 4.0 · Pharmaceutical Fronts 2020; 02(02): e79-e87
DOI: 10.1055/s-0040-1713820
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Natural Occurrence, Biological Functions, and Analysis of D-Amino Acids

Shuang-Xi Gu
1   Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, People's Republic of China
2   Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan, People's Republic of China
,
Hai-Feng Wang
1   Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, People's Republic of China
2   Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan, People's Republic of China
,
Yuan-Yuan Zhu
3   School of Chemistry & Environmental Engineering, Wuhan Institute of Technology, Wuhan, People's Republic of China
,
Fen-Er Chen
1   Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, People's Republic of China
4   Department of Chemistry, Fudan University, Shanghai, People's Republic of China
› Author Affiliations
Acknowledgments The support from the National Natural Science Foundation of China (Nos. 21602164, 21877087) is greatly appreciated.
Further Information

Publication History

Publication Date:
07 July 2020 (online)

Abstract

This review covers the recent development on the natural occurrence, functional elucidations, and analysis of amino acids of the D (dextro) configuration. In the pharmaceutical field, amino acids are not only used directly as clinical drugs and nutriments, but also widely applied as starting materials, catalysts, or chiral ligands for the synthesis of active pharmaceutical ingredients. Earler belief hold that only L-amino acids exist in nature and D-amino acids were artificial products. However, increasing evidence indicates that D-amino acids are naturally occurring in living organisms including human beings, plants, and microorganisms, playing important roles in biological processes. While D-amino acids have similar physical and chemical characteristics with their respective L-enantiomers in an achiral measurement, the biological functions of D-amino acids are remarkably different from those of L-ones. With the rapid development of chiral analytical techniques for D-amino acids, studies on the existence, formation mechanisms, biological functions as well as relevant physiology and pathology of D-amino acids have achieved great progress; however, they are far from being sufficiently explored.

 
  • References

  • 1 Vauquelin LN, Robiquet PJ. The discovery of a new plant principle in Asparagus sativus. Ann Chim 1806; 57: 88-93
  • 2 Vickery HB, Schmidt CLA. The history of the discovery of the amino acids. Chem Rev 1931; 9 (02) 169-318
  • 3 Gal J. Louis Pasteur, language, and molecular chirality. I. Background and dissymmetry. Chirality 2011; 23 (01) 1-16
  • 4 Weatherly CA, Du S, Parpia C, Santos PT, Hartman AL, Armstrong DW. D-amino acid levels in perfused mouse brain tissue and blood: a comparative study. ACS Chem Neurosci 2017; 8 (06) 1251-1261
  • 5 Marcone GL, Rosini E, Crespi E, Pollegioni L. D-amino acids in foods. Appl Microbiol Biotechnol 2020; 104 (02) 555-574
  • 6 Corrigan JJ. D-amino acids in animals. Science 1969; 164 (3876): 142-149
  • 7 Katane M, Homma H. D-Aspartate--an important bioactive substance in mammals: a review from an analytical and biological point of view. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879 (29) 3108-3121
  • 8 Fujii N, Kaji Y, Fujii N. D-Amino acids in aged proteins: analysis and biological relevance. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879 (29) 3141-3147
  • 9 Ohide H, Miyoshi Y, Maruyama R, Hamase K, Konno R. D-Amino acid metabolism in mammals: biosynthesis, degradation and analytical aspects of the metabolic study. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879 (29) 3162-3168
  • 10 Raucci F, Di Fiore MM. D-Asp: a new player in reproductive endocrinology of the amphibian Rana esculenta. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879 (29) 3268-3276
  • 11 Konno R, Brückner H, D'Aniello A, Fischer N, Fujii N, Homma H. , eds. An improved HPLC method for determination and quantification of D- and L-Asp. In: D-Amino acids: a new frontier in amino acid and protein research–Practical methods and protocols. New York, New York: Nova Science Publishers; 2007: 148-149
  • 12 Hamase K. Analysis and biological relevance of D-amino acids and relating compounds. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879 (29) 3077
  • 13 Grishin DV, Zhdanov DD, Pokrovskaya MV. , et al. D-amino acids in nature, agriculture and biomedicine. All Life 2020; 13 (01) 11-22
  • 14 Genchi G. An overview on D-amino acids. Amino Acids 2017; 49 (09) 1521-1533
  • 15 Zhao J, Taylor CJ, Newcombe EA. , et al. EphA4 regulates hippocampal neural precursor proliferation in the adult mouse brain by D-serine modulation of N-methyl-D-aspartate receptor signaling. Cereb Cortex 2019; 29 (10) 4381-4397
  • 16 Cook SP, Galve-Roperh I, Martínez del Pozo A, Rodríguez-Crespo I. Direct calcium binding results in activation of brain serine racemase. J Biol Chem 2002; 277 (31) 27782-27792
  • 17 De Miranda J, Panizzutti R, Foltyn VN, Wolosker H. Cofactors of serine racemase that physiologically stimulate the synthesis of the N-methyl-D-aspartate (NMDA) receptor coagonist D-serine. Proc Natl Acad Sci U S A 2002; 99 (22) 14542-14547
  • 18 Feltracco M, Barbaro E, Kirchgeorg T. , et al. Free and combined L- and D-amino acids in Arctic aerosol. Chemosphere 2019; 220: 412-421
  • 19 Kvenvolden K, Lawless J, Pering K. , et al. Evidence for extraterrestrial amino-acids and hydrocarbons in the Murchison meteorite. Nature 1970; 228 (5275): 923-926
  • 20 Katane M, Homma H. The Free Form of D-amino acids as a novel bioactive substance: physiological functions and involvement in human pathophysiology. Rinsho Byori 2017; 65 (01) 67-80
  • 21 Van Horn MR, Sild M, Ruthazer ES. D-serine as a gliotransmitter and its roles in brain development and disease. Front Cell Neurosci 2013; 7: 39
  • 22 Neims AH, Hellerman L. Flavoenzyme catalysis. Annu Rev Biochem 1970; 39 (01) 867-888
  • 23 D'Aniello A, D'Onofrio G, Pischetola M. , et al. Biological role of D-amino acid oxidase and D-aspartate oxidase. Effects of D-amino acids. J Biol Chem 1993; 268 (36) 26941-26949
  • 24 Hashimoto A, Nishikawa T, Hayashi T. , et al. The presence of free D-serine in rat brain. FEBS Lett 1992; 296 (01) 33-36
  • 25 Hashimoto A, Kumashiro S, Nishikawa T. , et al. Embryonic development and postnatal changes in free D-aspartate and D-serine in the human prefrontal cortex. J Neurochem 1993; 61 (01) 348-351
  • 26 Pollegioni L, Sasabe J. Editorial: bioscience of D-amino acid oxidase from biochemistry to pathophysiology. Front Mol Biosci 2018; 5: 108
  • 27 Sharma J, Kulshrestha R, Singh N, Jaggi AS. Dual role of D-amino acid oxidase in experimental pain models. Eur J Pharmacol 2019; 855: 98-102
  • 28 Padhi AK, Hazra S. Insights into the role of d-amino acid oxidase mutations in amyotrophic lateral sclerosis. J Cell Biochem 2018; 120 (02) 2180-2197
  • 29 Lin CH, Yang HT, Chiu CC, Lane HY. Blood levels of D-amino acid oxidase vs. D-amino acids in reflecting cognitive aging. Sci Rep 2017; 7 (01) 14849
  • 30 Pollegioni L, Sacchi S, Murtas G. Human D-amino acid oxidase: structure, function, and regulation. Front Mol Biosci 2018; 5: 107
  • 31 Schell MJ, Molliver ME, Snyder SH. D-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci U S A 1995; 92 (09) 3948-3952
  • 32 Benneyworth MA, Li Y, Basu AC, Bolshakov VY, Coyle JT. Cell selective conditional null mutations of serine racemase demonstrate a predominate localization in cortical glutamatergic neurons. Cell Mol Neurobiol 2012; 32 (04) 613-624
  • 33 Wolosker H, Dumin E, Balan L, Foltyn VN. D-amino acids in the brain: D-serine in neurotransmission and neurodegeneration. FEBS J 2008; 275 (14) 3514-3526
  • 34 Choi SR, Moon JY, Roh DH. , et al. Spinal D-serine increases PKC-dependent GluN1 phosphorylation contributing to the sigma-1 receptor-induced development of mechanical allodynia in a mouse model of neuropathic pain. J Pain 2017; 18 (04) 415-427
  • 35 Hamase K, Konno R, Morikawa A, Zaitsu K. Sensitive determination of D-amino acids in mammals and the effect of D-amino-acid oxidase activity on their amounts. Biol Pharm Bull 2005; 28 (09) 1578-1584
  • 36 Miyoshi Y, Hamase K, Tojo Y, Mita M, Konno R, Zaitsu K. Determination of D-serine and D-alanine in the tissues and physiological fluids of mice with various D-amino-acid oxidase activities using two-dimensional high-performance liquid chromatography with fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci 2009; 877 (24) 2506-2512
  • 37 Ferraris D, Duvall B, Ko YS. , et al. Synthesis and biological evaluation of D-amino acid oxidase inhibitors. J Med Chem 2008; 51 (12) 3357-3359
  • 38 Dunlop DS, Neidle A, McHale D, Dunlop DM, Lajtha A. The presence of free D-aspartic acid in rodents and man. Biochem Biophys Res Commun 1986; 141 (01) 27-32
  • 39 Bastings JJAJ, van Eijk HM, Olde Damink SW, Rensen SS. D-amino acids in health and disease: a focus on cancer. Nutrients 2019; 11 (09) 2205
  • 40 Hashimoto A, Oka T, Nishikawa T. Anatomical distribution and postnatal changes in endogenous free D-aspartate and D-serine in rat brain and periphery. Eur J Neurosci 1995; 7 (08) 1657-1663
  • 41 Sakai K, Homma H, Lee JA. , et al. D-aspartic acid localization during postnatal development of rat adrenal gland. Biochem Biophys Res Commun 1997; 235 (02) 433-436
  • 42 Li Y, Han H, Yin J, Li T, Yin Y. Role of D-aspartate on biosynthesis, racemization, and potential functions: a mini-review. Anim Nutr 2018; 4 (03) 311-315
  • 43 Nagata Y, Homma H, Lee JA, Imai K. D-Aspartate stimulation of testosterone synthesis in rat Leydig cells. FEBS Lett 1999; 444 (2-3): 160-164
  • 44 Wang H, Wolosker H, Pevsner J, Snyder SH, Selkoe DJ. Regulation of rat magnocellular neurosecretory system by D-aspartate: evidence for biological role(s) of a naturally occurring free D-amino acid in mammals. J Endocrinol 2000; 167 (02) 247-252
  • 45 Long Z, Lee JA, Okamoto T, Nimura N, Imai K, Homma H. d-Aspartate in a prolactin-secreting clonal strain of rat pituitary tumor cells (GH(3)). Biochem Biophys Res Commun 2000; 276 (03) 1143-1147
  • 46 Kobayashi J. D-Amino acids and lactic acid bacteria. Microorganisms 2019; 7 (12) 690
  • 47 D'Aniello S, Somorjai I, Garcia-Fernàndez J, Topo E, D'Aniello A. D-Aspartic acid is a novel endogenous neurotransmitter. FASEB J 2011; 25 (03) 1014-1027
  • 48 Ito T, Hayashida M, Kobayashi S. , et al. Serine racemase is involved in d-aspartate biosynthesis. J Biochem 2016; 160 (06) 345-353
  • 49 Fujii N. D-amino acid in elderly tissues. Biol Pharm Bull 2005; 28 (09) 1585-1589
  • 50 Heck SD, Siok CJ, Krapcho KJ. , et al. Functional consequences of posttranslational isomerization of Ser46 in a calcium channel toxin. Science 1994; 266 (5187): 1065-1068
  • 51 Murkin AS, Tanner ME. Dehydroalanine-based inhibition of a peptide epimerase from spider venom. J Org Chem 2002; 67 (24) 8389-8394
  • 52 Whittington CM, Koh JM, Warren WC. , et al. Understanding and utilising mammalian venom via a platypus venom transcriptome. J Proteomics 2009; 72 (02) 155-164
  • 53 Torres AM, Tsampazi M, Kennett EC. , et al. Characterization and isolation of L-to-D-amino-acid-residue isomerase from platypus venom. Amino Acids 2007; 32 (01) 63-68
  • 54 Torres AM, Menz I, Alewood PF. , et al. D-Amino acid residue in the C-type natriuretic peptide from the venom of the mammal, Ornithorhynchus anatinus, the Australian platypus. FEBS Lett 2002; 524 (1–3): 172-176
  • 55 Ha S, Kim I, Takata T. , et al. Identification of D-amino acid-containing peptides in human serum. PLoS One 2017; 12 (12) e0189972
  • 56 Brückner H, Westhauser T. Chromatographic determination of L- and D-amino acids in plants. Amino Acids 2003; 24 (1–2): 43-55
  • 57 Gandolfi I, Palla G, Marchelli R. , et al. D-alanine in fruit juices: a molecular marker of bacterial activity, heat treatments and shelf-life. J Food Sci 1994; 59 (01) 152-154
  • 58 Forsum O, Svennerstam H, Ganeteg U, Näsholm T. Capacities and constraints of amino acid utilization in Arabidopsis. New Phytol 2008; 179 (04) 1058-1069
  • 59 Aliashkevich A, Alvarez L, Cava F. New insights into the mechanisms and biological roles of D-amino acids in complex eco-systems. Front Microbiol 2018; 9: 683
  • 60 Erikson O, Hertzberg M, Näsholm T. A conditional marker gene allowing both positive and negative selection in plants. Nat Biotechnol 2004; 22 (04) 455-458
  • 61 Chen IC, Thiruvengadam V, Lin WD, Chang HH, Hsu WH. Lysine racemase: a novel non-antibiotic selectable marker for plant transformation. Plant Mol Biol 2010; 72 (1–2): 153-169
  • 62 Rekoslavskaya NI. Possible role of N-malonyl-D-tryptophan as an auxin precursor. Biol Plant 1986; 28 (01) 62-67
  • 63 Hill PW, Quilliam RS, DeLuca TH. , et al. Acquisition and assimilation of nitrogen as peptide-bound and D-enantiomers of amino acids by wheat. PLoS One 2011; 6 (04) e19220
  • 64 Michard E, Lima PT, Borges F. , et al. Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil D-serine. Science 2011; 332 (6028): 434-437
  • 65 Reynolds PE. Control of peptidoglycan synthesis in vancomycin-resistant enterococci: D,D-peptidases and D,D-carboxypeptidases. Cell Mol Life Sci 1998; 54 (04) 325-331
  • 66 Hsu YP, Booher G, Egan A, Vollmer W, VanNieuwenhze MS. D-Amino acid derivatives as in situ probes for visualizing bacterial peptidoglycan biosynthesis. Acc Chem Res 2019; 52 (09) 2713-2722
  • 67 Mutaguchi Y, Ohmori T, Akano H, Doi K, Ohshima T. Distribution of D-amino acids in vinegars and involvement of lactic acid bacteria in the production of D-amino acids. Springerplus 2013; 2 (01) 691
  • 68 Matsumoto M, Kunisawa A, Hattori T. , et al. Free D-amino acids produced by commensal bacteria in the colonic lumen. Sci Rep 2018; 8 (01) 17915
  • 69 Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R. D-amino acids trigger biofilm disassembly. Science 2010; 328 (5978): 627-629
  • 70 Hochbaum AI, Kolodkin-Gal I, Foulston L, Kolter R, Aizenberg J, Losick R. Inhibitory effects of D-amino acids on Staphylococcus aureus biofilm development. J Bacteriol 2011; 193 (20) 5616-5622
  • 71 Ramón-Peréz ML, Diaz-Cedillo F, Ibarra JA. , et al. D-Amino acids inhibit biofilm formation in Staphylococcus epidermidis strains from ocular infections. J Med Microbiol 2014; 63 (Pt 10): 1369-1376
  • 72 Paquet A, Rayman K. Some N-acyl-D-amino acid derivatives having antibotulinal properties. Can J Microbiol 1987; 33 (07) 577-582
  • 73 Szökő É, Vincze I, Tábi T. Chiral separations for d-amino acid analysis in biological samples. J Pharm Biomed Anal 2016; 130: 100-109
  • 74 Fukushima T, Kato M, Santa T, Imai K. Enantiomeric separation and sensitive determination of D,L-amino acids derivatized with fluorogenic benzofurazan reagents on Pirkle type stationary phases. Biomed Chromatogr 1995; 9 (01) 10-17
  • 75 Song Y, Feng Y, LeBlanc MH, Zhao S, Liu YM. Assay of trace D-amino acids in neural tissue samples by capillary liquid chromatography/tandem mass spectrometry. Anal Chem 2006; 78 (23) 8121-8128
  • 76 Kimura R, Tsujimura H, Tsuchiya M. , et al. Development of a cognitive function marker based on D-amino acid proportions using new chiral tandem LC-MS/MS systems. Sci Rep 2020; 10 (01) 804
  • 77 Simek P, Hušek P, Zahradníčková H. Heptafluorobutyl chloroformate-based sample preparation protocol for chiral and nonchiral amino acid analysis by gas chromatography. Methods Mol Biol 2012; 828: 137-152
  • 78 Hasegawa H, Masuda N, Natori H, Shinohara Y, Ichida K. Pharmacokinetics and toxicokinetics of d-serine in rats. J Pharm Biomed Anal 2019; 162: 264-271
  • 79 Waldhier MC, Almstetter MF, Nürnberger N, Gruber MA, Dettmer K, Oefner PJ. Improved enantiomer resolution and quantification of free D-amino acids in serum and urine by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. J Chromatogr A 2011; 1218 (28) 4537-4544
  • 80 Majhi KC, Karfa P, Madhuri R. Chromatographic separation of amino acids. In: Inamuddin, ed. Applications of Ion Exchange Materials in Biomedical Industries. Basel: Springer; 2019: 71-118
  • 81 Jakó T, Szabó E, Tábi T, Zachar G, Csillag A, Szökő E. Chiral analysis of amino acid neurotransmitters and neuromodulators in mouse brain by CE-LIF. Electrophoresis 2014; 35 (19) 2870-2876
  • 82 Wagner Z, Tábi T, Jakó T, Zachar G, Csillag A, Szökő E. Chiral separation and determination of excitatory amino acids in brain samples by CE-LIF using dual cyclodextrin system. Anal Bioanal Chem 2012; 404 (08) 2363-2368
  • 83 Fanali S. Chiral separations by CE employing CDs. Electrophoresis 2009; 30 (Suppl. 01) S203-S210
  • 84 Tanaka Y, Otsuka K, Terabe S. Separation of enantiomers by capillary electrophoresis-mass spectrometry employing a partial filling technique with a chiral crown ether. J Chromatogr A 2000; 875 (1–2): 323-330
  • 85 Pernot P, Mothet JP, Schuvailo O. , et al. Characterization of a yeast D-amino acid oxidase microbiosensor for D-serine detection in the central nervous system. Anal Chem 2008; 80 (05) 1589-1597
  • 86 Carlavilla D, Moreno-Arribas MV, Fanali S, Cifuentes A. Chiral MEKC-LIF of amino acids in foods: analysis of vinegars. Electrophoresis 2006; 27 (13) 2551-2557
  • 87 Swartz ME, Mazzeo JR, Grover ER, Brown PR. Separation of amino acid enantiomers by micellar electrokinetic capillary chromatography using synthetic chiral surfactants. Anal Biochem 1995; 231 (01) 65-71
  • 88 Rodríguez I, Jin LJ, Li SF. High-speed chiral separations on microchip electrophoresis devices. Electrophoresis 2000; 21 (01) 211-219
  • 89 Harrison DJ, Fluri K, Seiler K, Fan Z, Effenhauser CS, Manz A. Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science 1993; 261 (5123): 895-897
  • 90 Zhang Q, Ren S, Xue S. Investigation of fusidic acid as a chiral selector in capillary electrophoresis. Separ Purif Tech 2020; 242: 116768
  • 91 Bernardo-Bermejo S, Sanchez-Lopez E, Castro-Puyana M. , et al. Chiral capillary electrophoresis. Trends Analyt Chem 2020; 124: 115807
  • 92 Xue S, Ren S, Wang L, Zhang Q. Evaluation of tetraalkylammonium amino acid ionic liquids as chiral ligands in ligand-exchange capillary electrophoresis. J Chromatogr A 2020; 1611: 460579
  • 93 Sun Y, Zhang S. Application of capillary electrophoresis for ephedrine and pseudoephedrine detection: a review. Int J Electrochem Sci 2020; 15 (03) 2614-2623
  • 94 Patel AV, Kawai T, Wang L, Rubakhin SS, Sweedler JV. Chiral measurement of aspartate and glutamate in single neurons by large-volume sample stacking capillary electrophoresis. Anal Chem 2017; 89 (22) 12375-12382
  • 95 Zhang N, Tian M, Liu X, Yang L. Enzyme assay for d-amino acid oxidase using optically gated capillary electrophoresis-laser induced fluorescence detection. J Chromatogr A 2018; 1548: 83-91
  • 96 Ma D, Cai Q. N,N-dimethyl glycine-promoted Ullmann coupling reaction of phenols and aryl halides. Org Lett 2003; 5 (21) 3799-3802
  • 97 Sardina FJ, Rapoport H. Enantiospecific synthesis of heterocycles from alpha-amino acids. Chem Rev 1996; 96 (06) 1825-1872
  • 98 MacMillan DW. The advent and development of organocatalysis. Nature 2008; 455 (7211): 304-308
  • 99 Xiao Q, Tang Y, Xie P. , et al. Asymmetric amination of α,α-dialkyl substituted aldehydes catalyzed by a simple chiral primary amino acid and its application to the preparation of a S1P 1 agonist. RSC Advances 2019; 9 (57) 33497-33505
  • 100 Shahriar I, Islam MKB, Iqfath M. , et al. Solvent effect on vibrational circular dichroism of chiral amino acids. Theor Chem Acc 2019; 138: 32
  • 101 Herrera BT, Pilicer SL, Anslyn EV, Joyce LA, Wolf C. Optical analysis of reaction yield and enantiomeric excess: a new paradigm ready for prime time. J Am Chem Soc 2018; 140 (33) 10385-10401
  • 102 Wu X, Shi W, Li X, Ma H. Recognition moieties of small molecular fluorescent probes for bioimaging of enzymes. Acc Chem Res 2019; 52 (07) 1892-1904
  • 103 Zhang X, Yin J, Yoon J. Recent advances in development of chiral fluorescent and colorimetric sensors. Chem Rev 2014; 114 (09) 4918-4959
  • 104 Zhou Y, Yoon J. Recent progress in fluorescent and colorimetric chemosensors for detection of amino acids. Chem Soc Rev 2012; 41 (01) 52-67
  • 105 Sun Q, Yang SH, Wu L, Dong QJ, Yang WC, Yang GF. Detection of intracellular selenol-containing molecules using a fluorescent probe with near-zero background signal. Anal Chem 2016; 88 (11) 6084-6091
  • 106 Xu J, Yuan H, Zeng L. , et al. Recent progress in Michael addition-based fluorescent probes for sulfur dioxide and its derivatives. Chin Chem Lett 2018; 29 (10) 1456-1464
  • 107 Han J, Yue X, Wang J. , et al. A ratiometric merocyanine-based fluorescent probe for detecting hydrazine in living cells and zebra fish. Chin Chem Lett 2020; (e-pub ahead of print) DOI: 10.1016/j.cclet.2020.01.029.
  • 108 Pu L. Simultaneous determination of concentration and enantiomeric composition in fluorescent Sensing. Acc Chem Res 2017; 50 (04) 1032-1040
  • 109 Pu L. Enantioselective fluorescent sensors: a tale of BINOL. Acc Chem Res 2012; 45 (02) 150-163
  • 110 Pu L. Fluorescence of organic molecules in chiral recognition. Chem Rev 2004; 104 (03) 1687-1716
  • 111 Zhu YY, Wu XD, Abed M, Gu SX, Pu L. Biphasic enantioselective fluorescent recognition of amino acids by a fluorophilic probe. Chem Eur J 2019; 25 (33) 7866-7873
  • 112 Zhu YY, Wu XD, Gu SX, Pu L. Free amino acid recognition: a bisbinaphthyl-based fluorescent probe with high enantioselectivity. J Am Chem Soc 2019; 141 (01) 175-181
  • 113 Zeng C, Zhang X, Pu L. Enantioselective fluorescent imaging of free amino acids in living cells. Chem Eur J 2017; 23 (10) 2432-2438
  • 114 Wen K, Yu S, Huang Z. , et al. Rational design of a fluorescent sensor to simultaneously determine both the enantiomeric composition and the concentration of chiral functional amines. J Am Chem Soc 2015; 137 (13) 4517-4524