CC BY-NC-ND 4.0 · Organic Materials 2020; 02(02): 149-158
DOI: 10.1055/s-0040-1709998
Original Article
The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/). (2020) The Author(s).

Perylene Bisimide Cyclophanes: Structure–Property Relationships upon Variation of the Cavity Size

a  Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
,
David Bialas
a  Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
,
Peter Spenst
a  Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
,
Ana-Maria Krause
b  Center for Nanosystems Chemistry, Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
,
a  Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
b  Center for Nanosystems Chemistry, Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
› Author Affiliations
The authors are grateful for financial support from the Deutsche Forschungsgemeinschaft (DFG) within the research training school GRK 2112 on “Molecular Biradicals” at the University of Würzburg.
Further Information

Publication History

Received: 28 March 2020

Accepted after revision: 06 April 2020

Publication Date:
18 May 2020 (online)


Abstract

Five cyclophanes composed of two perylene bisimide (PBI) dyes and various CH2–arylene–CH2 linker units were synthesized. PM6-D3H4 geometry-optimized structures and a single crystal for one of these cyclophanes reveal well-defined distances between the two coplanar PBI units in these cyclophanes, spanning the range from 5.0 to 12.5 Å. UV/vis absorption spectra reveal a redistribution of oscillator strength of the vibronic bands due to a H-type exciton coupling even for the cyclophane with the largest interchromophoric distance. A quantitative evaluation according to the Kasha–Spano theory affords exciton coupling strengths ranging from 64 cm−1 for the largest cyclophane up to 333 cm−1 for the smallest one and a surprisingly good fit to the cubic interchromophoric distance in the framework of the point-dipole approximation. Interchromophoric interaction is also noticed in fluorescence lifetimes that are significantly increased for all five cyclophanes as expected for H-coupled chromophores due to a decrease of the radiative rate. For the three largest cyclophanes with interchromophoric distances of >9 Å, fluorescence quantum yields remain high in chloroform (>88%), whilst for the smaller ones with interchromophoric distances <6 Å, additional nonradiative pathways lead to a pronounced fluorescence quenching.

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1709998.


Supporting Information

 
  • References

  • 1 Steinberg H, Cram DJ. J. Am. Chem. Soc. 1952; 74: 5388
  • 2 Cram DJ, Cram JM. Acc. Chem. Res. 1971; 4: 204
  • 3 Odell B, Reddington MV, Slawin AM. Z, Spencer N, Stoddart JF, Williams DJ. Angew. Chem. Int. Ed. 1988; 27: 1547
  • 4 Stoddart JF. Angew. Chem. Int. Ed. 2017; 56: 11094
    • 5a Diederich F. Angew. Chem. Int. Ed. 1988; 27: 362
    • 5b Liu Z, Nalluri SK. M, Stoddart JF. Chem. Soc. Rev. 2017; 46: 2459
    • 6a Barnes JC, Juríček M, Strutt NL, Frasconi M, Sampath S, Giesener MA, McGrier PL, Bruns CJ, Stern CL, Sarjeant AA, Stoddart JF. J. Am. Chem. Soc. 2013; 135: 183
    • 6b Dale EJ, Vermeulen NA, Juríček M, Barnes JC, Young RM, Wasielewski MR, Stoddart JF. Acc. Chem. Res. 2016; 49: 262
  • 7 Spenst P, Würthner F. J. Photochem. Photobiol., A 2017; 31: 114
    • 8a Giaimo JM, Gusev AV, Wasielewski MR. J. Am. Chem Soc. 2002; 124: 8530
    • 8b Vauthey E. ChemPhysChem 2012; 13: 2001
    • 8c Bartynski AN, Gruber M, Das S, Rangan S, Mollinger S, Trinh C, Bradforth SE, Vandewal K, Salleo A, Bartynski RA, Bruetting W, Thompson ME. J. Am. Chem. Soc. 2015; 137: 5397
    • 8d Bialas D, Kirchner E, Würthner F. Chem. Commun. 2016; 52: 3777
    • 8e Sung J, Nowak-Król A, Schlosser F, Fimmel B, Kim W, Kim D, Würthner F. J. Am. Chem. Soc. 2016; 138: 9029
    • 8f Hetzer C, Guldi DM, Tykwinski RR. Chem. Eur. J. 2018; 24: 8245
    • 8g Papadopoulos I, Zirzlmeier J, Hetzer C, Bae YJ, Krzyaniak MD, Wasielewski MR, Clark T, Tykwinski RR, Guldi DM. J. Am. Chem. Soc. 2019; 141: 6191
    • 9a Wasielewski MR. Chem. Rev. 1992; 92: 435
    • 9b Maruyama K, Osuka A, Mataga N. Pure Appl. Chem. 1994; 66: 867
    • 10a Keshri SK, Takai A, Ishizuka T, Kojima T, Takeuchi M. Angew. Chem. Int. Ed. 2020; 59: 5254
    • 10b Adinarayana B, Kato K, Shimizu D, Tanaka T, Furukawa K, Osuka A. Angew. Chem. Int. Ed. 2020; 59: 4320
    • 10c Zwick P, Weiland KJ, Malinčík J, Stefani D, Häussinger D, van der Zant HS. J, Dulić D, Mayor M. J. Org. Chem. 2020; 85: 118
    • 10d Nozawa R, Kim J, Oh J, Lamping A, Wang YM, Shimizu S, Hisaki I, Kowalczyk T, Fliegl H, Kim D, Shinokubo H. Nat. Commun. 2019; 10: 3576
  • 11 Würthner F, Saha-Möller CR, Fimmel B, Ogi S, Leowanawat P, Schmidt D. Chem. Rev. 2016; 116: 962
  • 12 Chen Z, Lohr A, Saha-Möller CR, Würthner F. Chem. Soc. Rev. 2009; 38: 564
    • 13a Spenst P, Würthner F. Angew. Chem. Int. Ed. 2015; 54: 10165
    • 13b Spenst P, Young RM, Wasielewski MR, Würthner F. Chem. Sci. 2016; 7: 5428
    • 14a Langhals H, Ismael R. Eur. J. Org. Chem. 1998; 1915
    • 14b Feng J, Zhang Y, Zhao C, Lamping A, Wang YM, Shimizu S, Hisaki I, Kowalczyk T, Fliegl H, Kim D, Shinokubo H. Chem. Eur. J. 2008; 14: 7000
    • 14c Schlosser F, Moos M, Lambert C, Würthner F. Adv. Mater. 2013; 25: 410
    • 14d Ball M, Zhong Y, Fowler B, Zhang B, Li P, Etkin G, Paley DW, Decatur J, Dalsania AK, Li H, Xiao S, Ng F, Steigerwald ML, Nuckolls C. J. Am. Chem. Soc. 2016; 138: 12861
  • 15 Chen Z, Fimmel B, Würthner F. Org. Biomol. Chem. 2012; 10: 5845
  • 16 Sieblist A. Bachelor thesis. Universität Würzburg; 2014
  • 17 Spenst P, Sieblist A, Würthner F. Chem. Eur. J. 2017; 23: 1667
    • 18a Würthner F. Pure Appl. Chem. 2006; 78: 2341
    • 18b Nowak-Król A, Würthner F. Org. Chem. Front. 2019; 6: 1272
    • 19a Spenst P. PhD thesis. Universität Würzburg; 2016
    • 19b Schultz JD, Coleman AF, Mandal A, Shin JY, Ratner MA, Young RM, Wasielewski MR. J. Phys. Chem. Lett. 2019; 10: 7498
  • 20 Würthner F, Thalacker C, Sautter A, Schärtl W, Ibach W, Hollricher O. Chem. Eur. J. 2000; 6: 3871
  • 21 Stewart JJ. P. J. J. Mol. Model. 2007; 13: 1173
    • 22a MOPAC2012. Stewart, J. J. P. Stewart Computational Chemistry, Version 14.045, web: http://OpenMOPAC.net
    • 22b Maia JD. C, Urquiza Carvalho GA, Mangueira Jr CP, Santana SR, Cabral LA. F, Rocha GB. J. Chem. Theory Comput. 2012; 8: 3072
  • 23 Řezáč J, Hobza P. J. Chem. Theory Comput. 2012; 8: 141
  • 24 Osswald P, Würthner F. J. Am. Chem. Soc. 2007; 129: 14319
    • 25a Osswald P, Leusser D, Stalke D, Würthner F. Angew. Chem. Int. Ed. 2005; 44: 250
    • 25b Hippius C, van Stokkum IH. M, Zangrando E, Williams RM, Wykes M, Beljonne D, Würthner F. J. Phys. Chem. 2008; 112: 14626
  • 26 Spek AL. Acta Crystallogr. A 1990; 46: C34
    • 27a Seybold G, Wagenblast G. Dyes Pigm. 1989; 11: 303
    • 27b Gvishi R, Reisfeld R, Burshtein Z. Chem. Phys. Lett. 1993; 213: 338
    • 28a Seibt J, Winkler T, Renziehausen K, Dehm V, Würthner F, Meyer HD, Engel V. J. Phys. Chem. A 2009; 113: 13475
    • 28b Spano FC. Acc. Chem. Res. 2010; 43: 429
  • 29 Schlosser F, Moos M, Lambert C, Würthner F. Adv. Mater. 2013; 25: 410
  • 30 Kistler KA, Pochas CM, Yamagata H, Matsika S, Spano FC. J. Phys. Chem. B 2012; 116: 77
  • 31 Oleson A, Zhu T, Dunn IS, Bialas D, Bai Y, Zhang W, Dai M, Reichman DR, Tempelaar R, Huang L, Spano FC. J. Phys. Chem. C 2019; 123: 20567
  • 32 Hestand NJ, Spano FC. Chem. Rev. 2018; 118: 7069
  • 33 Kaufmann C, Bialas D, Stolte M, Würthner F. J. Am. Chem. Soc. 2018; 140: 9986
  • 34 Bialas D, Brüning C, Schlosser F, Fimmel B, Thein J, Engel V, Würthner F. Chem. Eur. J. 2016; 22: 15011
  • 35 Kasha M, Rawls HR, El-Bayoumi MA. Pure Appl. Chem. 1965; 11: 371
    • 36a Czikklely V, Forsterling HD, Kuhn H. Chem. Phys. Lett. 1970; 6: 207
    • 36b Beljonne D, Cornil J, Silbey R, Millié P, Brédas J-L. J. Chem. Phys. 2000; 112: 4749
    • 36c Kistler KA, Spano FC, Matsika S. J. Phys. Chem. B 2013; 117: 2032
  • 37 Sheldrick GM. Acta Crystallogr. A 2008; 64: 112
  • 38 Pascu M, Ruggi A, Scopelliti R, Severin K. Chem. Commun. 2013; 49: 45
  • 39 Rosa JC, Galanakis D, Ganellin CR, Dunn PM, Jenkinson DH. J. Med. Chem. 1998; 41: 2
  • 40 Rajakumar P, Padmanabhan R. Tetrahedron 2011; 67: 9669