Synthesis 2021; 53(05): 805-847
DOI: 10.1055/s-0040-1705971
review

Advances in Carbon–Element Bond Construction under Chan–Lam Cross-Coupling Conditions: A Second Decade

Ajesh Vijayan
a  Department of Chemistry, CHRIST (Deemed to be University), Hosur road, Bengaluru 560029, India
,
Desaboini Nageswara Rao
b  Department of Chemistry, Indian Institute of Technology (ISM), Dhanbad 826004, India
,
c  CSIR – National Institute for Interdisciplinary Science and Technology, Industrial Estate PO, Thiruvananthapuram 695019, India
,
Patrick Y. S. Lam
d  Baruch S. Blumberg Institute, Doylestown, PA 18902, USA
,
b  Department of Chemistry, Indian Institute of Technology (ISM), Dhanbad 826004, India
› Author Affiliations
This research work was financially supported by DST-SERB (EMR/2017/002533) .


In memory of Siva Reddy

Abstract

Copper-mediated carbon–heteroatom bond-forming reactions involving a wide range of substrates have been in the spotlight for many organic chemists. This review highlights developments between 2010 and 2019 in both stoichiometric and catalytic copper-mediated reactions, and also examples of nickel-mediated reactions, under modified Chan–Lam cross-coupling conditions using various nucleophiles; examples include chemo- and regioselective N-arylations or O-arylations. The utilization of various nucleophiles as coupling partners together with reaction optimization (including the choice of copper source, ligands, base, and other additives), limitations, scope, and mechanisms are examined; these have benefitted the development of efficient and milder methods. The synthesis of medicinally valuable or pharmaceutically important nitrogen heterocycles, including isotope-labeled compounds, is also included. Chan–Lam coupling reaction can now form twelve different C–element bonds, making it one of the most diverse and mild reactions known in organic chemistry.

1 Introduction

2 Construction of C–N and C–O Bonds

2.1 C–N Bond Formation

2.1.1 Original Discovery via Stoichiometric Copper-Mediated C–N Bond Formation

2.1.2 Copper-Catalyzed C–N Bond Formation

2.1.3 Coupling with Azides, Sulfoximines, and Sulfonediimines as Nitrogen­ Nucleophiles

2.1.4 Coupling with N,N-Dialkylhydroxylamines

2.1.5 Enolate Coupling with sp3-Carbon Nucleophiles

2.1.6 Nickel-Catalyzed Chan–Lam Coupling

2.1.7 Coupling with Amino Acids

2.1.8 Coupling with Alkylboron Reagents

2.1.9 Coupling with Electron-Deficient Heteroarylamines

2.1.10 Selective C–N Bond Formation for the Synthesis of Heterocycle-Containing Compounds

2.1.11 Using Sulfonato-imino Copper(II) Complexes

2.2 C–O Bond Formation

2.2.1 Coupling with (Hetero)arylboron Reagents

2.2.2 Coupling with Alkyl- and Alkenylboron Reagents

3 C–Element (Element = S, P, C, F, Cl, Br, I, Se, Te, At) Bond Forma tion under Modified Chan–Lam Conditions

4 Conclusions



Publication History

Received: 21 July 2020

Accepted after revision: 12 October 2020

Publication Date:
15 December 2020 (online)

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For selected general reviews, see:
    • 1a Nakamura I, Yamamoto Y. Chem. Rev. 2004; 104: 2127
    • 1b Kim H, Chang S. ACS Catal. 2016; 6: 2341
    • 1c Beletskaya IP, Cheprakov AV. Organometallics 2012; 31: 7753
    • 1d Zeng Q, Zhang L, Zhou Y. Chem Rec. 2018; 18: 1278
    • 1e Bariwal J, Eycken EV. Chem. Soc. Rev. 2013; 42: 9283
    • 1f Sadig JE. R, Willis MC. Synthesis 2011; 1
    • 1g Rauws TR. M, Maes BU. W. Chem. Soc. Rev. 2012; 41: 2463

    • For reviews on the Chan–Lam coupling, see:
    • 1h For Part I see: Qiao JX, Lam PY. S. Synthesis 2011; 829
    • 1i Rao KS, Wu T.-S. Tetrahedron 2012; 68: 7735
    • 1j Ma X, Liu F, Mo D. Chin. J. Org. Chem. 2017; 37: 1069

    • Two reviews (1k and 1l) were published during the final stage of our manuscript preparation, see:
    • 1k West JW, Fyfe JW. B, Vantourout JC, Watson AJ. B. Chem. Rev. 2019; 119: 12491
    • 1l Chen J.-Q, Li J.-H, Dong Z.-B. Adv. Synth. Catal. 2020; 362: 3311
  • 2 Kienle M, Dubbaka SR, Brade K, Knochel P. Eur. J. Org. Chem. 2007; 4166
  • 3 Taster S, Mies J, Lang M. Adv. Synth. Catal. 2007; 349: 2256
    • 4a Guram AS, Buchwald SL. J. Am. Chem. Soc. 1994; 116: 7901
    • 4b Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
    • 5a Paul F, Patt J, Hartwig JF. J. Am. Chem. Soc. 1994; 116: 5969
    • 5b Hartwig JF. Acc. Chem. Res. 2008; 41: 1534
    • 6a Ullmann F, Sponagel P. Ber. Dtsch. Chem. Ges. 1905; 38: 2211
    • 6b Monnier F, Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 6954
    • 7a Goldberg I. Ber. Dtsch. Chem. Ges. 1906; 39: 1619
    • 7b Sambiago C, Marsden SP, Blacker AJ, McGowan PC. Chem. Soc. Rev. 2014; 43: 3525
  • 8 Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400
  • 9 Elliott GI, Konopelski JP. Tetrahedron 2001; 57: 5683
  • 10 Finet JP, Fedorov AY, Combes S, Boyer G. Curr. Org. Chem. 2002; 6: 597
  • 11 Chan DM. T, Monaco KL, Wang R.-P, Winters MP. Tetrahedron Lett. 1998; 39: 2933
  • 12 Evans DA, Katz JL, West TR. Tetrahedron Lett. 1998; 39: 2937 The Evans group found out about the discovery of Cu-promoted N/O-arylation by DuPont from the 1997 National Organic Symposium poster presented by Chan
  • 14 Meyer GJ. J. Labelled Compd. Radiopharm. 2018; 61: 154
  • 15 Collman JP, Zhong M. Org. Lett. 2000; 2: 1233
  • 16 Collman JP, Zhong M, Zeng L, Costanzo S. J. Org. Chem. 2001; 66: 1528
  • 17 Lan JB, Chen L, Yu X.-Q, You J.-S, Xie R.-G. Chem. Commun. 2004; 188
  • 18 Kantam ML, Venkanna GT, Sridhar C, Sreedhar B, Choudary BM. J. Org. Chem. 2006; 71: 9522
  • 19 Antilla JC, Buchwald SL. Org. Lett. 2001; 3: 2077
  • 20 Quach TD, Batey KA. Org. Lett. 2003; 5: 4397
  • 21 Rao DN, Rasheed S, Kumar KA, Reddy AS, Das P. Adv. Synth. Catal. 2016; 358: 2126
  • 22 Reddy AS, Reddy KR, Rao DN, Jaladanki CK, Bharatam PV, Lam PY. S, Das P. Org. Biomol. Chem. 2017; 15: 801
  • 23 Liu S, Zu W, Zhang J, Xu L. Org. Biomol. Chem. 2017; 15: 9288
  • 24 Rasheed S, Rao DN, Reddy KR, Aravinda S, Vishwakarma RA, Das P. RSC Adv. 2014; 4: 4960
  • 25 Han Y, Zhang M, Zhang Y.-Q, Zhang Z.-H. Green Chem. 2018; 20: 4891
  • 26 Wang H, Tu Y.-H, Liu D.-Y, Hu X.-G. Org. Biomol. Chem. 2018; 16: 6634
    • 27a Arrington K, Barcan GA, Calandra NA, Erickson GA, Li L, Liu L, Nilson MG, Strambeanu II, VanGelder KF, Woodard JL, Xie S, Allen CL, Kowalski JA, Leitch DC. J. Org. Chem. 2019; 84: 4680
    • 27b Bowman RK, Bullock KM, Copley RC. B, Deschamps NM, McClure MS, Powers JD, Wolters AM, Wu L, Xie S. J. Org. Chem. 2015; 80: 9610
  • 28 Dar’in D, Krasavin M. J. Org. Chem. 2016; 81: 12514
  • 29 Khosravi A, Mokhtari J, Naimi-Jamal MR, Tahmasebi S, Panahi L. RSC Adv. 2017; 7: 46022
  • 30 Vantourout JC, Li L, Bendito-Moll E, Chabbra S, Arrington K, Bode BE, Isidro-Llobet A, Kowalski JA, Nilson MG, Wheelhouse KM. P, Woodard JL, Xie S, Leitch DC, Watson AJ. B. ACS Catal. 2018; 8: 9560
    • 31a McGarry KA, Duenas AA, Clark TB. J. Org. Chem. 2015; 80: 7193
    • 31b Huffman LM, Stahl SS. J. Am. Chem. Soc. 2008; 130: 9196
  • 32 Roy S, Sarma MJ, Kashyap B, Phukan P. Chem. Commun. 2016; 52: 1170
  • 33 Qi HL, Chen DS, Ye JS, Huang JM. J. Org. Chem. 2013; 78: 7482
    • 34a Vantourout JC, Law RP, Isidro-Llobet A, Atkinson SJ, Watson AJ. B. J. Org. Chem. 2016; 81: 3942
    • 34b Vantourout JC, Miras HN, Isidro-Llobet A, Sproules S, Watson AJ. B. J. Am. Chem. Soc. 2017; 139: 4769
  • 35 Wexler RP, Nuhant P, Senter TJ, Gale-Day ZJ. Org. Lett. 2019; 21: 4540
  • 36 Yoo W.-J, Tsukamoto T, Kobayashi S. Angew. Chem. Int. Ed. 2015; 54: 6587
  • 37 Kumar KA, Kannaboina P, Rao DN, Das P. Org. Biomol. Chem. 2016; 14: 8989
  • 38 Reddy BV. S, Reddy NS, Reddy YJ, Reddy YV. Tetrahedron Lett. 2011; 52: 2547
  • 39 You C, Yao F, Yan T, Cai M. RSC Adv. 2016; 6: 43605
  • 40 Moon S.-Y, Nam J, Rathwell K, Kim W.-S. Org. Lett. 2014; 16: 338
  • 41 Moon S.-Y, Kim UB, Sung D.-B, Kim W.-S. J. Org. Chem. 2015; 80: 1856
  • 42 Moessner C, Bolm C. Org. Lett. 2005; 7: 2667
  • 43 Bohmann RA, Bolm C. Org. Lett. 2013; 15: 4277
  • 44 Candy M, Bohmann RA, Bolm C. Adv. Synth. Catal. 2012; 354: 2928
  • 45 Battula SR. K, Subbareddy GV, Chakravarthy IE. Tetrahedron Lett. 2014; 55: 517
  • 46 Nandi GC, Kota SR, Goverder T, Kruger HG, Arridsson PI. Tetrahedron 2014; 70: 5428
  • 47 Matsuda N, Hirano K, Satoh T, Miura M. Angew. Chem. Int. Ed. 2012; 51: 3642
  • 48 Rucker RP, Whittaker AM, Dang H, Lalic G. Angew. Chem. Int. Ed. 2012; 51: 3953
    • 49a Moon PJ, Halperin HM, Lundgren RJ. Angew. Chem. Int. Ed. 2016; 55: 1894
    • 49b Jiang Y, Ma D. Copper-Catalyzed Ligand Promoted Ullmann-Type Coupling Reactions. In Catalysis without Precious Metals. Bullock RM. Wiley–VCH; Weinheim: 2010: 213-233
    • 49c Morgan J, Pinhey JT. J. Chem. Soc., Perkin Trans. 1 1990; 715
  • 50 Raghuvanshi DS, Gupta AK, Singh KN. Org. Lett. 2012; 14: 4326
    • 51a Hanaya K, Miller MK, Ball ZT. Org. Lett. 2019; 21: 2445
    • 51b Ohata J, Zeng Y, Segatori L, Ball ZT. Angew. Chem. Int. Ed. 2018; 57: 4015
  • 52 DalZotto C, Michaux J, Martinand-Lurin E, Campagne JM. Eur. J. Org. Chem. 2010; 3811
  • 53 Gagnon A, St-Onge M, Little K, Duplessis M, Barabé F. J. Am. Chem. Soc. 2007; 129: 44
  • 54 Tsuritani T, Strotman NA, Yamamoto Y, Kawasaki M, Yasuda N, Mase T. Org. Lett. 2008; 10: 1653
  • 55 González I, Mosquera J, Guerrero C, Rodríguez R, Cruces J. Org. Lett. 2009; 11: 1677
  • 56 Benard S, Neuville L, Zhu J. Chem. Commun. 2010; 46: 3393
  • 57 Racine E, Monnier F, Vors J.-P, Taillefer M. Chem. Commun. 2013; 49: 7412
  • 58 Rossi SA, Shimkin KW, Xu Q, Mori-Quiroz LM, Watson DA. Org. Lett. 2013; 15: 2314
  • 59 Mori-Quiroz LM, Shimkin KW, Rezazadeh S, Kozlowski RA, Watson DA. Chem. Eur. J. 2016; 22: 15654
  • 60 Sueki S, Kuninobe Y. Org. Lett. 2013; 15: 1544
  • 61 Derosa J, O’Duill ML, Holcomb M, Boulous MN, Patman RL, Wang F, Tran-Dubé M, McAlpine I, Engle KM. J. Org. Chem. 2018; 83: 3417
  • 62 Harris MR, Li Q, Lian Y, Xiao J, Londregan AT. Org. Lett. 2017; 19: 2450
  • 63 Rao DN, Rasheed S, Aravinda S, Vishwakarma RA, Das P. RSC Adv. 2013; 3: 11472
  • 64 Chen J, Natte K, Man NY. T, Stewart SG, Wu X.-F. Tetrahedron Lett. 2015; 56: 4843
  • 65 Morellato L, Huteau V, Pochet S. Tetrahedron Lett. 2014; 55: 1625
  • 66 Shi W.-M, Liu F.-P, Wang Z.-X, Bi H.-Y, Liang C, Xu L.-P, Su G.-F, Mo D.-L. Adv. Synth. Catal. 2017; 359: 2741
  • 67 Sahoo H, Mukherjee S, Grandhi GS, Selvakumar J, Baidya M. J. Org. Chem. 2017; 82: 2764
  • 68 Chen C.-H, Liu Q.-Q, Ma X.-P, Feng Y, Liang C, Pan C.-X, Su GF, Mo D.-L. J. Org. Chem. 2017; 82: 6417
  • 69 Rao DN, Rasheed S, Vishwakarma RA, Das P. Chem. Commun. 2014; 50: 12911
  • 70 Li J, Neuville L. Org. Lett. 2013; 15: 6124
  • 71 Onaka T, Umemoto H, Miki Y, Nakamura A, Maegawa T. J. Org. Chem. 2014; 79: 6703
  • 72 Liu C.-Y, Li Y, Ding J.-Y, Dong D.-W, Han F.-S. Chem. Eur. J. 2014; 20: 2373
  • 73 Li J, Benard S, Neuville L, Zhu J. Org. Lett. 2012; 14: 5980
  • 74 Kumar KA, Kannaboina P, Jaladanki CK, Bharatam PV, Das P. ChemistrySelect 2016; 3: 601
  • 75 Rasheed S, Rao DN, Das P. J. Org. Chem. 2015; 80: 9321
  • 76 Kumar KA, Kannaboina P, Dhaked DK, Vishwakarma RA, Bharatam PV, Das P. Org. Biomol. Chem. 2015; 13: 1481
  • 77 Gao J, Shao Y, Zhu J, Zhu J, Mao H, Wang X, Lv X. J. Org. Chem. 2014; 79: 9000
  • 78 Bruneau A, Brion J.-D, Alami M, Messaoudi S. Chem. Commun. 2013; 49: 8359
  • 79 Hardouin Duparc V, Schaper F. Dalton Trans. 2017; 46: 12766
  • 80 Chen T, Huang Q, Luo Y, Hu Y, Lu W. Tetrahedron Lett. 2013; 54: 1401
    • 81a Petrassi HM, Sharpless KB, Kelly JW. Org. Lett. 2001; 3: 139
    • 81b Patil AS, Mo D.-L, Wang H.-Y, Mueller DS, Anderson LL. Angew. Chem. Int. Ed. 2012; 51: 7799
  • 82 Mondal M, Sarmah G, Gogoi K, Bora U. Tetrahedron Lett. 2012; 53: 6219
    • 83a Lam PY. S, Clark CG, Saubern S, Adams J, Averill KM, Chan DM. T. Synlett 2000; 674
    • 83b Lam PY. S, Bonne D, Vincent G, Clark CG, Combs AP. Tetrahedron Lett. 2003; 44: 1691
  • 84 Crifar C, Petiot P, Ahmad T, Gagnon A. Chem. Eur. J. 2014; 20: 2755
    • 85a Makhaeva GF, Aksinenko AY, Sokolov VB, Serebryakova OG, Richardson RJ. Bioorg. Med. Chem. Lett. 2009; 19: 5528
    • 85b Suzuki H, Matuoka T, Ohtsuka I, Osuka A. Synthesis 1985; 499
  • 86 Wang R, Wang L, Zhang K, Li J, Zou D, Wu Y, Wu Y. Tetrahedron Lett. 2015; 56: 4815
  • 87 Zhang L, Zhang G, Zhang M, Cheng J. J. Org. Chem. 2010; 75: 7472
  • 88 Dai J.-J, Liu J.-H, Luo D.-F, Liu L. Chem. Commun. 2011; 47: 677
  • 89 Marcum JS, McGarry KA, Ferber CJ, Clark TB. J. Org. Chem. 2016; 81: 7963
    • 90a Pine SH. Org. React. 1993; 43: 1
    • 90b Petrzilka M. Helv. Chim. Acta 1978; 61: 2286
    • 90c Bosch M, Schlaf M. J. Org. Chem. 2003; 68: 5225
    • 90d Ramana CV, Mallik R, Gonnade RG, Gurjar MK. Tetrahedron Lett. 2006; 47: 3649
    • 90e Shade RE, Hyde AM, Olsen J.-C, Merlic CA. J. Am. Chem. Soc. 2010; 132: 1202
  • 92 Kontokosta D, Mueller DS, Wang H.-Y, Anderson LL. Org. Lett. 2013; 15: 4830
  • 93 Jacobson CE, Martinez-Muñoz N, Gorin DJ. J. Org. Chem. 2015; 80: 7305
  • 94 King AE, Ryland BL, Brunold TC, Stahl SS. Organometallics 2012; 31: 7948
    • 95a Flohr A, Jakob-Roetne R, Wostl W. (Hoffmann–La Roche Inc.) US WO2006061136, 2006
    • 95b Donnell AF, Michoud C, Rupert KC, Han X, Aguilar D, Frank KB, Fretland AJ, Gao L, Goggin B, Hogg JH, Hong K, Janson CA, Kester RF, Kong N, Le K, Li S, Liang W, Lombardo LJ, Lou Y, Lukacs CM, Mischke S, Moliterni JA, Polonskaia A, Schutt AD, Solis DS, Specian A, Taylor RT, Weisel M, Remiszewski SW. J. Med. Chem. 2013; 56: 7772
    • 95c Khatib ME, Molander GA. Org. Lett. 2014; 16: 4944
  • 96 Steemers L, Van Maarseveen JH. Org. Biomol. Chem. 2019; 17: 2103
  • 97 Herradura PS, Pendola KA, Guy RK. Org. Lett. 2000; 2: 2019
  • 98 Savarin C, Srogl J, Liebeskind LS. Org. Lett. 2002; 4: 4309
  • 99 Xu H.-J, Zhao Y.-Q, Feng T, Feng Y.-S. J. Org. Chem. 2012; 77: 2878
  • 100 Shanmugapriya J, Rajaguru K, Muthusubramanian S, Bhuvanesh N. Eur. J. Org. Chem. 2016; 1963
  • 101 Xu J, Zhang L, Li X, Gao Y, Tang G, Zhao Y. Org. Lett. 2016; 18: 1266
  • 102 Koley S, Chowdhury S, Chanda T, Ramulu BJ, Anand N, Singh MS. Eur. J. Org. Chem. 2015; 409
    • 103a Gao M.-Y, Xu W, Zhang S.-B, Li Y.-S, Dong Z.-B. Eur. J. Org. Chem. 2018; 6693
    • 103b Cheng Y, Liu X, Dong Z.-B. Eur. J. Org. Chem. 2018; 815
    • 104a Liu X, Zhang S.-B, Zhu H, Cheng Y, Peng H.-Y, Dong Z.-B. Eur. J. Org. Chem. 2018; 4483
    • 104b Liu X, Dong Z.-B. J. Org. Chem. 2019; 84: 11524
  • 105 Sun N, Che L, Mo W, Hu B, Shen Z, Hu X. Org. Biomol. Chem. 2015; 13: 691
  • 106 Zhuang R, Xu J, Cai Z, Tang G, Fang M, Zhao Y. Org. Lett. 2011; 13: 2110
  • 107 Hu G, Chen W, Fu T, Peng Z, Qiao H, Gao Y, Zhao Y. Org. Lett. 2013; 15: 5362
    • 108a Chu L, Qing F.-L. Org. Lett. 2010; 12: 5060
    • 108b King AE, Huffman LM, Casitas A, Costas M, Ribas X, Stahl SS. J. Am. Chem. Soc. 2010; 132: 12068
  • 109 Senecal TD, Parsons AT, Buchwald SL. J. Org. Chem. 2011; 76: 1174
    • 110a Nebra N, Grushin VV. J. Am. Chem. Soc. 2014; 136: 16998
    • 110b Novak P, Lishchynskyi A, Grushin VV. Angew. Chem. Int. Ed. 2012; 51: 7767
  • 111 Ye Y, Schimler SD, Hanley DS, Sanford MS. J. Am. Chem. Soc. 2013; 135: 16292
  • 112 Tredwell M, Preshlock SM, Taylor NJ, Gruber S, Huiban M, Passchier J, Mercier J, Genicot C, Gouverneur V. Angew. Chem. Int. Ed. 2014; 53: 7751
  • 113 Mossine AV, Brooks AF, Makaravage KJ, Miller JM, Ichiishi N, Sanford MS, Scott PJ. H. Org. Lett. 2015; 17: 5780
  • 114 Wu H, Hynes J. Org. Lett. 2010; 12: 1192
  • 115 Schimler SD, Sanford MS. Synlett 2016; 27: 2279
  • 116 Vyhivskyi O, Dlin EA, Finko AV, Stepanova SP, Ivanenkov YA, Skvortsov D, Mironov AV, Zyk NV, Majouga AG, Beloglazkina EK. ACS Comb. Sci. 2019; 21: 456
  • 117 Hanaya K, Ohata J, Miller MK, Mangubat-Medina AE, Swierczynski MJ, Yang DC, Rosenthal RM, Popp BV, Ball ZT. Chem. Commun. 2019; 55: 2841
  • 118 Reilly SW, Makvandi M, Xu K, Mach RH. Org. Lett. 2018; 20: 1752

    • For recent mechanistic studies on the Chan–Lam coupling, see:
    • 119a ref 34b.
    • 119b Duparc VH, Bano GL, Schaper F. ACS Catal. 2018; 8: 7308