CC BY-NC-ND 4.0 · Organic Materials 2020; 02(02): 071-077
DOI: 10.1055/s-0040-1702933
Original Article
The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/). (2020) The Author(s).

Construction of Interface Dipoles by Surface Doping and Their Role in the Open Circuit Voltage in Polymer Solar Cells

Shiyu Li
a  State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, No 381 Wushan Road, Guangzhou 510640, P. R. China
,
Xinbo Wen
a  State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, No 381 Wushan Road, Guangzhou 510640, P. R. China
,
Jiadong Zhou
a  State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, No 381 Wushan Road, Guangzhou 510640, P. R. China
,
Nan Zheng
a  State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, No 381 Wushan Road, Guangzhou 510640, P. R. China
,
a  State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, No 381 Wushan Road, Guangzhou 510640, P. R. China
,
a  State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, No 381 Wushan Road, Guangzhou 510640, P. R. China
› Author Affiliations
Funding Information National Natural Science Foundation of China (21733005, 21975076, 51521002, 51761135101, 51873068), the Fund of the Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province (2019B030301003), and Key Program of Guangzhou Scientific Research Special Project (201707020024, 201904020035).
Further Information

Publication History

Received: 26 November 2019

Accepted after revision: 15 January 2020

Publication Date:
09 April 2020 (online)


Abstract

A kind of dipolar interface is realized by surface doping of poly-(3,4-ethylenedioxythiophene) (PEDOT) with tetrafluoro-tetracyano-quinodimethane (F4TCNQ). PEDOT is in situ synthesized by electrochemical polymerization of 3,4-ethylenedioxythiophene (EDOT) on an indium tin oxide (ITO) electrode, and then F4TCNQ is spin-coated atop the PEDOT layer. Because the LUMO of F4TCNQ is lower than the HOMO of PEDOT, the spontaneous electron transfer from PEDOT to F4TCNQ results in a bilayered structure of PEDOT cations and F4TCNQ anions. Thus, a permanent interfacial dipole is formed in the surface-doping system. The surface doping not only enhances the conductivity of PEDOT, but also increases the surface work function of the electrode. The dipolar film is applied as the anode interface in polymer solar cells (PSCs), and the results show that such an interface dipole plays a very important role in the open circuit voltage (V oc) of the PSCs.

Supporting Information

Supporting Information for this article is available online at https://doi.org/10.1055/s-0040-1702933.


Supporting Information

 
  • References

  • 1 Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Science 1995; 270: 1789
  • 2 Cheng P, Li G, Zhan XW, Yang Y. Nat. Photonics 2018; 12: 131
  • 3 Zhang Z, Tan HS, Guo X, Facchetti A, Yan H. Nat. Energy 2018; 3: 720
  • 4 Hou J, Inganäs O, Friend RH, Gao F. Nat. Mater. 2018; 17: 119
  • 5 Ye L, Hu H, Ghasemi M, Wang T, Collins BA, Kim JH, Jiang K, Carpenter JH, Li H, Li Z, McAfee T, Zhao J, Chen X, Lai JL. Y, Ma T, Bredas JL, Yan H, Ade H. Nat. Mater. 2018; 17: 253
  • 6 Sun CK, Pan F, Chen SS, Wang R, Sun R, Shang ZY, Qiu BB, Min J, Lv ML, Meng L, Zhang CF, Xiao M, Yang CD, Li YF. Adv. Mater. 2019; 31: 1905480
  • 7 Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule 2019; 3: 1140
  • 8 Fan BB, Zhang DF, Li MJ, Zhong WK, Zeng ZM. Y, Ying L, Huang F, Cao Y. Sci. China Chem. 2019; 62: 746
  • 9 Cui Y, Yao H, Hong L, Zhang T, Xu Y, Xian K, Gao B, Qin J, Zhang J, Wei Z, Hou J. Adv. Mater. 2019; 31: 1808356
  • 10 Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv. Mater. 2015; 27: 1170
  • 11 Zhou ZC, Xu SJ, Song JN, Jin YZ, Yue QH, Qian YH, Liu F, Zhang FL, Zhu XZ. Nat. Energy 2018; 3: 952
  • 12 Gao K, Li L, Lai T, Huang Y, Huang F, Peng J, Cao Y, Liu F, Russell TR, Janssen RA. J. Am. Chem. Soc. 2015; 137: 7282
  • 13 Gao K, Miao J, Xiao L, Deng W, Kan Y, Liang T, Wang C, Huang F, Peng J, Cao Y, Liu F, Russell TP, Wu H, Peng X. Adv. Mater. 2016; 28: 4727
  • 14 Gao K, Zhu Z, Xu B, Jo SB, Kan Y, Peng X, Jen AK. Adv. Mater. 2017; 29: 1703980
  • 15 Xie Z, Würthner F. Adv. Energy Mater. 2017; 7: 1602573
  • 16 Wu Z, Sun C, Dong S, Jiang XF, Wu S, Wu H, Yip HL, Huang F, Cao Y. J. Am. Chem. Soc. 2016; 138: 2004
  • 17 Wen X, Nowak-Król A, Nagler O, Kraus F, Zhu N, Zheng N, Müller M, Schmidt D, Xie Z, Würthner F. Angew. Chem. Int. Ed. 2019; 58: 13051
  • 18 Rivnay J, Inal S, Collins BA, Sessolo M, Stavrinidou E, Strakosas X, Tassone C, Delongchamp DM, Malliaras GG. Nat. Commun. 2016; 7: 11287
  • 19 De Jong MP, Van Ijzendoorn LJ, De Voigt MJ. A. Appl. Phys. Lett. 2000; 77: 2255
  • 20 Turak A. RSC Adv. 2013; 3: 6188
  • 21 Arora S, Kumar Rajouria S, Kumar P, Bhatnagar PK, Arora M, Tandon RP. Phys. Scr. 2011; 83: 035804
  • 22 Wong KW, Yip HL, Luo Y, Wong KY, Lau WM, Low KH, Chow HF, Gao ZQ, Yeung WL, Chang CC. Appl. Phys. Lett. 2002; 80: 2788
  • 23 Rafique S, Abdullah SM, Shahid MM, Ansari MO, Sulaiman K. Sci. Rep. 2017; 7: 39555
  • 24 Chen M-C, Chiou Y-S, Chiu J-M, Tedla A, Tai Y. Marked. J. Mater. Chem. A 2013; 1: 3680
  • 25 Nguyen TP, Le Rendu P, Long PD, De Vos SA. Surf. Coat. Tech. 2004; 180-181: 646
  • 26 Kim HY, Sachse C, Hermenau M, Fehse K, Riede M, Müller-Meskamp L, Leo K. Appl. Phys. Lett. 2011; 99: 113305
  • 27 Kim H, Nam S, Lee H, Woo S, Ha C-S, Ree M, Kim Y. J. Phys. Chem. C 2011; 115: 13502
  • 28 Shao S, Liu J, Bergqvist J, Shi S, Veit C, Würfel U, Xie Z, Zhang F. Adv. Energy Mater. 2013; 3: 349
  • 29 Choi H, Kim HB, Ko SJ, Kim JY, Heeger AJ. Adv. Mater. 2015; 27: 892
  • 30 Murray IP, Lou SJ, Cote LJ, Loser S, Kadleck CJ, Xu T, Szarko JM, Rolczynski BS, Johns JE, Huang J, Yu L, Chen LX, Marks TJ, Hersam MC. J. Phys. Chem. Lett. 2011; 2: 3006
  • 31 Liu Y, Duzhko VV, Page ZA, Emrick T, Russell TP. Acc. Chem. Res. 2016; 49: 2478
  • 32 He Z, Zhong C, Huang X, Wong WY, Wu H, Chen L, Su S, Cao Y. Adv. Mater. 2011; 23: 4636
  • 33 Zhou D, Cheng X, Xu H, Yang H, Liu H, Wu F, Chen L, Chen Y. J. Mater. Chem. A 2016; 4: 18478
  • 34 Xu H, Lu Z, Ding Z, Hu J, Liu J, Liu Y. Nano Res. 2018; 11: 4293
  • 35 Dong S, Zhang K, Liu X, Yin Q, Yip HL, Huang F, Cao Y. Sci. China Chem. 2019; 62: 67
  • 36 Zhang Z-G, Qi B, Jin Z, Chi D, Qi Z, Li Y, Wang J. Energy Environ. Sci. 2014; 7: 1966
  • 37 O'Malley KM, Li C-Z, Yip H-L, Jen AK-Y. Adv. Energy Mater. 2012; 2: 82
  • 38 Lin X, Jumabekov AN, Lal NN, Pascoe AR, Gomez DE, Duffy NW, Chesman AS. R, Sears K, Fournier M, Zhang Y, Bao Q, Cheng Y-B, Spiccia L, Bach U. Nat. Commun. 2017; 8: 613
  • 39 Ma W, Luo Y, Nian L, Wang J, Wen X, Liu L, Hanif M, Xie Z, Ma Y. ACS Appl. Mater. Interfaces 2018; 10: 10513
  • 40 Wang R, Nian L, Yao L, Liu L, Xie Z, Ma Y. ACS Appl. Mater. Interfaces 2016; 8: 26463
  • 41 Lv Y, Yao L, Gu C, Xu Y, Liu D, Lu D, Ma Y. Adv. Energy Mater. 2011; 21: 2896
  • 42 Gu C, Chen Y, Zhang Z, Xue S, Sun S, Zhang K, Zhong C, Zhang H, Pan Y, Lv Y, Yang Y, Li F, Zhang S, Huang F, Ma Y. Adv. Mater. 2013; 25: 3443
  • 43 Feng T, Xiao B, Lv Y, Xie Z, Wu H, Ma Y. Chem. Commun. 2013; 49: 6283
  • 44 Debiemme-Chouvy C. Electrochem. Commun. 2009; 11: 298
  • 45 Ma W, Qin L, Gao Y, Zhang W, Xie Z, Yang B, Liu L, Ma Y. Chem. Commun. 2016; 52: 13600
  • 46 Gu C, Huang N, Chen Y, Zhang H, Zhang S, Li F, Ma Y, Jiang D. Angew. Chem. Int. Ed. 2016; 55: 3049
  • 47 Gu C, Zhang Z, Sun S, Pan Y, Zhong C, Lv Y, Li M, Ariga K, Huang F, Ma Y. Adv. Mater. 2012; 24: 5727
  • 48 Chen W, Qi D, Gao X, Wee AT. S. Prog. Surf. Sci. 2009; 84: 279
  • 49 Ivanović M, Peisert H, Chassé T. Org. Electron. 2016; 39: 267
  • 50 Martinez JI, Flores F, Ortega J, Rangan S, Ruggieri C, Bartynski R. J. Phys. Chem. C 2015; 119: 22086
  • 51 Yan H, Manion JG, Yuan M, Garcia de Arquer FP, McKeown GR, Beaupre S, Leclerc M, Sargent EH, Seferos DS. Adv. Mater. 2016; 28: 6491
  • 52 Liu D, Li Y, Yuan J, Hong Q, Shi G, Yuan D, Wei J, Huang C, Tang J, Fung M-K. J. Mater. Chem. A 2017; 5: 5701
  • 53 Saito Y, Fukuri N, Senadeera R, Kitamura T, Wada Y, Yanagida S. Electrochem. Commun. 2004; 6: 71
  • 54 Groenedaal L, Jonas F, Freitag D, Pielartzik H, Reynolds JR. Adv. Mater. 2000; 12: 481
  • 55 Ma L, Hu P, Jiang H, Kloc C, Sun H, Soci C, Voityuk AA, Michel-Beyerle ME, Gurzadyan GG. Sci. Rep. 2016; 6: 28510
  • 56 Ohisa S, Kato T, Takahashi T, Suzuki M, Hayashi Y, Koganezawa T, McNeill CR, Chiba T, Pu YJ, Kido J. ACS Appl. Mater. Interfaces 2018; 10: 17318