CC BY-NC-ND 4.0 · Organic Materials 2020; 02(02): 116-128
DOI: 10.1055/s-0040-1702149
Original Article
The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/). (2020) The Author(s).

Biomimetic Elastin-Like Polypeptides as Materials for the Activation of Mechanophoric Catalysts

a  Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Science II, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
,
b  Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany
,
Reinhard Paschke
b  Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany
,
a  Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Science II, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
› Author Affiliations
Funding Information The authors are thankful for grants from the Sonderforschungsbereich/Transregio (SFB/TRR) 102 (TP A03 and A12) and the DFG (grant within the SPP 1568). The authors also thank the Leistungszentrum “System- und Biotechnologie” (Uni-CBS1) for financial support for the project “Biologisch abbaubare Partikel über Enkapsulierungsmethoden: Emulsions-/Evaporationsverfahren und 3D-Printing”.
Further Information

Publication History

Received: 26 November 2019

Accepted after revision: 31 December 2019

Publication Date:
16 April 2020 (online)


Abstract

Elastin-like polypeptides (ELPs) are well known for their elastic and thermoresponsive behaviors. Their elasticity originates from the formation of a β-spiral which is the consequence of stacking type-II β-turns, formed from individual VPGVG pentapeptide units. Here, the synthesis of ELPs of varying chain lengths [VPGVG, (VPGVG)2, and (VPGVG)4] and their coupling to a mechanoresponsive catalyst are reported. The attached ELP chains can act as “molecular springs,” allowing for an efficient uptake and transmission of an applied force to the mechanophoric bond. This leads to stress-induced activation of the mechanophoric catalyst, in turn transforming mechanical energy into a “click” reaction. Secondary structure analysis via IR and CD spectroscopy revealed that the β–spiral formation of the ELP is not affected by the coupling process and the β–spiral is still intact in the mechanocatalyst after the coupling. Mechanochemical activation of the synthesized catalysts by an external applied force, studied via ultrasonication, showed conversions of the copper(I)-catalyzed alkyne-azide “click” reaction (CuAAC) up to 5.6% with an increasing chain length of the peptide, proving the potential to incorporate this chemistry into biomaterial engineering.

Supporting Information

Supporting information for this article is available online at https://doi.org/10.1055/s-0040-1702149.


Supporting Information

 
  • References

  • 1 Anwar RA. Biochem. Educ. 1990; 18: 162
  • 2 Li B, Daggett V. J. Muscle. Res. Cell Motil. 2002; 23: 561
  • 3 Keeley FW, Bellingham CM, Woodhouse KA. Philos. Trans. R. Soc. London, Ser. B 2002; 357: 185
  • 4 Daamen WF, Veerkamp JH, van Hest JC. M, van Kuppevelt TH. Biomaterials 2007; 28: 4378
  • 5 Perticaroli S, Ehlers G, Jalarvo N, Katsaras J, Nickels JD. J. Phys. Chem. Lett. 2015; 6: 4018
  • 6 Foster JA, Bruenger E, Gray WR, Sandberg LB. J. Biol. Chem. 1973; 248: 2876
  • 7 Urry DW, Cunningham WD, Ohnishi T. Biochemistry 1974; 13: 609
  • 8 Sandberg LB, Leslie JG, Leach CT, Alvarez VL, Torres AR, Smith DW. Pathol. Biol. 1985; 33: 266
  • 9 Yeh H, Ornstein-Goldstein N, Indik Z. , et al. Coll. Relat. Res. 1987; 7: 235
  • 10 Urry DW, Long MM. CRC Crit. Rev. Biochem. 1976; 4: 1
  • 11 Venkatachalam CM, Urry DW. Macromolecules 1981; 14: 1225
  • 12 Urry DW, Trapane TL, Long MM, Prasad KU. J. Chem. Soc., Faraday Trans. 1983; 79: 853
  • 13 Urry DW, Venkatachalam CM. Int. J. Quantum Chem. 1983; 24: 81
  • 14 Urry DW. J. Protein Chem. 1988; 7: 1
  • 15 Urry DW. J. Protein Chem. 1988; 7: 81
  • 16 Urry DW, Long MM, Ohnishi T, Jacobs M. Biochem. Biophys. Res. Commun. 1974; 61: 1427
  • 17 Khaled MA, Venkatachalam CM, Sugano H, Urry DW. Int. J. Pept. Protein Res. 1981; 17: 23
  • 18 Urry DW, Trapane TL, Sugano H, Prasad KU. J. Am. Chem. Soc. 1981; 103: 2080
  • 19 Tunn I, de Léon AS, Blank KG, Harrington MJ. Nanoscale 2018; 10: 22725
  • 20 López-García P, Goktas M, Bergues-Pupo AE, Koksch B, Varón Silva D, Blank KG. Phys. Chem. Chem. Phys. 2019; 21: 9145
  • 21 Davis DA, Hamilton A, Yang J, Cremar LD, Van Gough D, Potisek SL, Ong MT, Braun PV, Martínez TJ, White SR, Moore JS, Sottos NR. Nature 2009; 459: 68
  • 22 Beiermann BA, Davis DA, Kramer SL. B, Moore JS, Sottos NR, White SR. J. Mater. Chem. 2011; 21: 8443
  • 23 Zhang H, Chen Y, Lin Y, Fang X, Xu Y, Ruan Y, Weng W. Macromolecules 2014; 47: 6783
  • 24 Chen Y, Sijbesma RP. Macromolecules 2014; 47: 3797
  • 25 Clough JM, Balan A, van Daal TL. J, Sijbesma RP. Angew. Chem. Int. Ed. 2016; 55: 1445
  • 26 Piermattei A, Karthikeyan S, Sijbesma RP. Nat. Chem. 2009; 1: 133
  • 27 Jakobs RT. M, Sijbesma RP. Organometallics 2012; 31: 2476
  • 28 Michael P, Binder WH. Angew. Chem. Int. Ed. 2015; 54: 13918
  • 29 Michael P, Sheidaee Mehr SK, Binder WH. J. Polym. Sci., Part A: Polm. Chem. 2017; 55: 3893
  • 30 Di Giannantonio M, Ayer MA, Verde-Sesto E, Lattuada M, Weder C, Fromm KM. Angew. Chem. Int. Ed. 2018; 57: 11445
  • 31 Michael P, Biewend M, Binder WH. Macromol. Rapid Commun. 2018; 39: e1800376
  • 32 Sha Y, Zhang Y, Xu E, Wang Z, Zhu T, Craig SL, Tang C. ACS Macro Lett. 2018; 7: 1174
  • 33 Biewend M, Neumann S, Michael P, Binder WH. Polym. Chem. 2019; 10: 1078
  • 34 Sha Y, Zhang Y, Xu E, McAlister CW, Zhu T, Craig SL, Tang C. Chem. Sci. 2019; 10: 4959
  • 35 Hickenboth CR, Moore JS, White SR, Sottos NR, Baudry J, Wilson SR. Nature 2007; 446: 423
  • 36 Larsen MB, Boydston AJ. J. Am. Chem. Soc. 2013; 135: 8189
  • 37 Larsen MB, Boydston AJ. J. Am. Chem. Soc. 2014; 136: 1276
  • 38 Diesendruck CE, Steinberg BD, Sugai N, Silberstein MN, Sottos NR, White SR, Braun PV, Moore JS. J. Am. Chem. Soc. 2012; 134: 12446
  • 39 Kean ZS, Craig SL. Polymer 2012; 53: 1035
  • 40 Van Der Hoff BM. E, Glynn PA. R. J. Macromol. Sci. Part A Pure Appl. Chem. 1974; 8: 429
  • 41 Van der Hoff BM. E, Gall CE. J. Macromol. Sci. Part A Pure Appl. Chem. 1977; 11: 1739
  • 42 Funtan S, Michael P, Binder WH. Biomimetics 2019; 4: 24
  • 43 Chen Y, Guan Z. J. Am. Chem. Soc. 2010; 132: 4577
  • 44 Kong J, Yu S. Acta Biochim. Biophys. Sin. 2007; 39: 549
  • 45 Serrano V, Liu W, Franzen S. Biophys. J. 2007; 93: 2429
  • 46 Greenfield NJ. Nat. Protoc. 2006; 1: 2876
  • 47 Binder WH, Sachsenhofer R. Macromol. Rapid Commun. 2008; 29: 952
  • 48 Tisato F, Marzano C, Porchia M, Pellei M, Santini C. Med. Res. Rev. 2010; 30: 708
  • 49 Gandin V, Porchia M, Tisato F, Zanella A, Severin E, Dolmella A, Marzano C. J. Med. Chem. 2013; 56: 7416
  • 50 Li F, Bravo-Rodriguez K, Phillips C, Seidel RW, Wieberneit F, Stoll R, Doltsinis NL, Sanchez-Garcia E, Sander W. J. Phys. Chem. B 2013; 117: 3560
  • 51 Maity S, Kumar P, Haldar D. Soft Matter. 2011; 7: 5239