CC BY-NC-ND 4.0 · Journal of Morphological Sciences 2019; 36(04): 247-254
DOI: 10.1055/s-0039-1698373
Original Article
Thieme Revinter Publicações Ltda Rio de Janeiro, Brazil

Pineal Gland Morphology in Relation to Age and Season in Three Canidae Species

1   Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russia
,
Viktor Ilyukha
1   Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russia
,
Lyudmila Uzenbaeva
1   Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russia
› Institutsangaben
Funding Details The study was performed under state order (project N° 0218–2019–0073).
Weitere Informationen

Publikationsverlauf

04. September 2018

20. Juli 2019

Publikationsdatum:
04. Dezember 2019 (online)

Abstract

Introduction The aim of the present study was to determine the morphological features of the pineal gland in three closely related Canidae species (raccoon dog, Nyctereutes procyonoides Gray, 1834; silver fox, Vulpes vulpes L., 1758; and blue fox, Vulpes lagopus L., 1758) of different ages during the breeding (spring) and nonbreeding (winter) periods.

Materials and Methods Histological analysis of the pineal glands of canids was performed.

Results The morphological changes in the pineal gland detected in the current study are either age-associated, including increase in the reticular fibers and vascularization in the studied species, as well as increase in the amount of the protruding septae in the blue fox, or seasonally related, including an increase in the number and size of blood vessels. The present work reported two types of pigments: lipofuscin (primarily in the silver fox) and melanin (primarily in the raccoon dog and in the blue fox). The pineal gland in the blue fox is characterized by the ability to form corpora arenacea.

Conclusions The present study provides the first insight into the morphological changes of the pineal gland in three closely related Canidae species of different ages during the breeding (spring) and nonbreeding (winter) periods, and showed some species-specific features of gland morphology. The aspects concerning the biogenesis of the calcium concretions and the factors influencing the accumulation of pigments need further investigation.

 
  • References

  • 1 Pévet P. Anatomy of the pineal gland of mammals. In: Relkin R. ., eds. Current Endocrinology: The Pineal Gland. Elsevier Biomedical; Amsterdam: 1983: 1-75
  • 2 Vollrath L. The pineal organ. In: Oksche A, Vollrath L. , eds. Handbuch Der Mikroskopischen Anatomie Des Menschen, vol 7. Springer; Berlin, Heidelberg, New York: 1981
  • 3 Goldman BD. Mammalian photoperiodic system: formal properties and neuroendocrine mechanisms of photoperiodic time measurement. J Biol Rhythms 2001; 16 (04) 283-301
  • 4 Simonneaux V, Ribelayga C. Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol Rev 2003; 55 (02) 325-395
  • 5 Asikainen J. Wintering strategy of the boreal raccoon dog (Nyctereutes procyonoides) — Applications to farming practice. Publications of the University of Eastern Finland; . Dissertations in Forestry and Natural Sciences No 111. Joensuu: 2013
  • 6 Fuglei E. . Physiological adaptations of the Arctic fox to high Arctic conditions [Ph.D. dissertation], University of Oslo, Oslo, Norway; 2000
  • 7 Korhonen H, Harri M. Seasonal changes in thermoregulation of the raccoon dog (Nyctereutes procyonoides Gray 1834). Comp Biochem Physiol A Comp Physiol 1984; 77 (02) 213-219
  • 8 Sillero-Zubiri C, Hoffmann M, Macdonald DW. Canids: Foxes, Wolves, Jackals and Dogs. IUCN/SSC Canid Specialist Group, Published by: IUCN; Gland, Switzerland and Cambridge, UK: 2004
  • 9 Bulc M, Lewczuk B, Prusik M, Gugołek A, Przybylska-Gornowicz B. Calcium concrements in the pineal gland of the Arctic fox (Vulpes lagopus) and their relationship to pinealocytes, glial cells and type I and III collagen fibers. Pol J Vet Sci 2010; 13 (02) 269-278
  • 10 Calvo J, Boya J, García-Mauriño JE, Lopez-Carbonell A. Postnatal development of the dog pineal gland: electron microscopy. J Pineal Res 1990; 8 (03) 245-254
  • 11 Calvo J, Boya J, García-Mauriño A, López Carbonell A. Postnatal development of the dog pineal gland. Light microscopy. Histol Histopathol 1990; 5 (01) 31-36
  • 12 Karasek M, Hansen JT. Ultrastructure of the pineal gland of the fox. Am J Anat 1982; 163 (03) 257-267
  • 13 Kolesnikova LA. [The epiphysis of relatively wild and domesticated foxes: the morphofunctional changes over the course of 24 hours]. Fiziol Zh Im I M Sechenova 1996; 82 (02) 91-97
  • 14 Redondo E, Regodon S, Masot J, Gázquez A, Franco A. Postnatal development of female sheep pineal gland under natural inhibitory photoperiods: an immunocytochemical and physiological (melatonin concentration) study. Histol Histopathol 2003; 18 (01) 7-17
  • 15 Sakai Y, Hira Y, Matsushima S. Regional differences in the pineal gland of the cotton rat, Sigmodon hispidus: light microscopic, electron microscopic, and immunohistochemical observations. J Pineal Res 1996; 20 (03) 125-137
  • 16 Calvo J, Boya J. Postnatal evolution of the rat pineal gland: light microscopy. J Anat 1984; 138 (Pt 1): 45-53
  • 17 Ferreira-Medeiros M, Mandarim-de-Lacerda CA, Correa-Gillieron EM. Pineal gland post-natal growth in rat revisited. Anat Histol Embryol 2007; 36 (04) 284-289
  • 18 Capucchio MT, Márquez M, Pregel P. , et al. Parenchymal and vascular lesions in ageing equine brains: histological and immunohistochemical studies. J Comp Pathol 2010; 142 (01) 61-73
  • 19 Tapp E, Huxley M. The histological appearance of the human pineal gland from puberty to old age. J Pathol 1972; 108 (02) 137-144
  • 20 López-Muñoz F, Boya J, Calvo JL, Marín F. Immunohistochemical localization of glial fibrillary acidic protein (GFAP) in rat pineal stalk astrocytes. Histol Histopathol 1992; 7 (04) 643-646
  • 21 Goldman H, Wurtman RJ. Flow of blood to the pineal body of the rat. Nature 1964; 203 (4940): 87-88
  • 22 Smith AJ, Mondain-Monval M, Andersen Berg K. , et al. Effects of melatonin implantation on spermatogenesis, the moulting cycle and plasma concentrations of melatonin, LH, prolactin and testosterone in the male blue fox (Alopex lagopus). J Reprod Fertil 1987; 79 (02) 379-390
  • 23 Asikainen J, Mustonen A-M, Hyvärinen H, Nieminen P. Seasonal reproductive endocrine profile of the raccoon dog (Nyctereutes procyonoides)-effects of melatonin and food deprivation. J Exp Zoolog A Comp Exp Biol 2003; 299 (02) 180-187
  • 24 Forsberg M, Madej A. Effects of melatonin implants on plasma concentrations of testosterone, thyroxine and prolactin in the male silver fox (Vulpes vulpes). J Reprod Fertil 1990; 89 (01) 351-358
  • 25 Regodón S, Pozo D, Roncero V. Histomorphogenesis and immunohistochemical study of the bovine pineal gland (Bos taurus) during prenatal development (160 days of gestation to birth). Histol Histopathol 2006; 21 (10) 1043-1053
  • 26 Al-Hussain SM. The pinealocytes of the human pineal gland: A light and electron microscopic study. Folia Morphol (Warsz) 2006; 65 (03) 181-187
  • 27 Hira Y, Sakai Y, Matsushima S. Comparisons of sizes of pinealocyte nuclei and pinealocytes in young and adult Chinese hamsters (Cricetulus griseus) under different photoperiod conditions. J Pineal Res 1989; 7 (04) 411-418
  • 28 Humbert W, Pévet P. The pineal gland of the aging rat: calcium localization and variation in the number of pinealocytes. J Pineal Res 1995; 18 (01) 32-40
  • 29 Pévet P. On the presence of different populations of pinealocytes in the mammalian pineal gland. J Neural Transm (Vienna) 1977; 40 (04) 289-304
  • 30 Sibarov DA, Kovalenko RI, Nozdrachev AD. [Pinealocyte functioning in stress during daytime in rats]. Ross Fiziol Zh Im I M Sechenova 2000; 86 (08) 1049-1056
  • 31 Rath MF, Coon SL, Amaral FG, Weller JL, Møller M, Klein DC. Melatonin synthesis: Acetylserotonin O-methyltransferase (ASMT) is strongly expressed in a subpopulation of pinealocytes in the male rat pineal gland. Endocrinology 2016; 157 (05) 2028-2040
  • 32 Zań RS, Roliński Z, Kowalski CJ, Bojarska-Junak A, Madany J. Diurnal and seasonal changes in endogenous melatonin levels in the blood plasma in dogs. Pol J Vet Sci 2013; 16 (04) 759-761
  • 33 Garidou ML, Vivien-Roels B, Pévet P, Miguez J, Simonneaux V. Mechanisms regulating the marked seasonal variation in melatonin synthesis in the European hamster pineal gland. Am J Physiol Regul Integr Comp Physiol 2003; 284 (04) R1043-R1052
  • 34 Quay WB. Pineal chemistry in cellular and physiological mechanisms. Ill.: Thomas; 1974
  • 35 Calvo J, Boya J, Garcia-Mauriño JE, Lopez-Carbonell A. Structure and ultrastructure of the pigmented cells in the adult dog pineal gland. J Anat 1988; 160: 67-73
  • 36 Calvo JL, Boya J, García-Mauriño JE, Rancaño D. Presence of melanin in the cat pineal gland. Acta Anat (Basel) 1992; 145 (01) 73-78
  • 37 Bhatnagar KP, Hilton FK. Observations on the pineal gland of the big brown bat, Eptesicus fucus: possible correlation of melanin intensification with constant darkness. Anat Rec 1994; 240 (03) 367-376
  • 38 Vígh B, Szél A, Debreceni K, Fejér Z, Manzano e Silva MJ, Vígh-Teichmann I. Comparative histology of pineal calcification. Histol Histopathol 1998; 13 (03) 851-870
  • 39 Borell U, Orström A. The turnover of phosphate in the pineal body compared with that in other parts of the brain. Biochem J 1947; 41 (03) 398-403
  • 40 Doyle AJ, Anderson GD. Physiologic calcification of the pineal gland in children on computed tomography: prevalence, observer reliability and association with choroid plexus calcification. Acad Radiol 2006; 13 (07) 822-826
  • 41 Zimmerman RA, Bilaniuk LT. Age-related incidence of pineal calcification detected by computed tomography. Radiology 1982; 142 (03) 659-662
  • 42 Kunz D, Schmitz S, Mahlberg R. , et al. A new concept for melatonin deficit: on pineal calcification and melatonin excretion. Neuropsychopharmacology 1999; 21 (06) 765-772
  • 43 Sandyk R. Pineal and habenula calcification in schizophrenia. Int J Neurosci 1992; 67 (1-4): 19-30
  • 44 Admassie D, Mekonnen A. Incidence of normal pineal and chroids plexus calcification on brain CT (computerized tomography) at Tikur Anbessa Teaching Hospital Addis Ababa, Ethiopia. Ethiop Med J 2009; 47 (01) 55-60
  • 45 Mori R, Kodaka T, Sano T. Preliminary report on the correlations among pineal concretions, prostatic calculi and age in human adult males. Anat Sci Int 2003; 78 (03) 181-184
  • 46 Maślińska D, Laure-Kamionowska M, Deręgowski K, Maśliński S. Association of mast cells with calcification in the human pineal gland. Folia Neuropathol 2010; 48 (04) 276-282
  • 47 Champney TH, Joshi BN, Vaughan MK, Reiter RJ. Superior cervical ganglionectomy results in the loss of pineal concretions in the adult male gerbil (Meriones unguiculatus). Anat Rec 1985; 211 (04) 465-468
  • 48 Bocchi G, Valdre G. Physical, chemical, and mineralogical characterization of carbonate-hydroxyapatite concretions of the human pineal gland. J Inorg Biochem 1993; 49 (03) 209-220
  • 49 Diehl BJM. Time-related changes in size of nuclei of pinealocytes in rats. Cell Tissue Res 1981; 218 (02) 427-438
  • 50 Krstić R. Pineal calcification: its mechanism and significance. J Neural Transm Suppl 1986; 21: 415-432
  • 51 Schmid HA. Decreased melatonin biosynthesis, calcium flux, pineal gland calcification and aging: a hypothetical framework. Gerontology 1993; 39 (04) 189-199