Semin Respir Crit Care Med 2019; 40(06): 810-824
DOI: 10.1055/s-0039-1697917
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Endocrine Complications of Cystic Fibrosis: A Multisystem Disease of the Endocrine Organs

Katie Larson Ode
1   Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Iowa Stead Family Children's Hospital, Iowa City, Iowa
,
Christine L. Chan
2   Division of Pediatric Endocrinology, Department of Pediatrics, Colorado Children's Hospital, University of Colorado School of Medicine, Aurora, Colorado
,
Andrea Granandos
3   Division of Endocrinology and Metabolism, Department of Pediatrics, Children's Washington University School of Medicine in St. Louis, St. Louis, Missouri
,
Melissa Putman
4   Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts
5   Division of Endocrinology, Massachusetts General Hospital, Boston, Massachusetts
,
Amir Moheet
6   Department of Medicine, University of Minnesota, Minneapolis, Minnesota
› Author Affiliations
Further Information

Publication History

Publication Date:
03 November 2019 (online)

Abstract

Cystic fibrosis (CF) is one of the most common life-limiting genetic disorders. Although CF is typically considered primarily as a pulmonary disease, the CF conductance transmembrane regulator is present throughout the body. From an endocrine perspective, this multisystem disease manifests primarily in the pancreas as a unique form of diabetes (CF-related diabetes mellitus), as bone disease, and as reproductive health issues in people with CF. These complications have become ever more concerning to people with CF as treatment for pulmonary disease improves and lifespans lengthen, increasing the impact of nonpulmonary complications. Our understanding of the management of these concerns continues to evolve, and, although there are some effective treatments, there is great opportunity for continued investigation into the pathophysiology of the endocrine complications of CF and their treatment.

 
  • References

  • 1 Moheet A, Moran A. CF-related diabetes: containing the metabolic miscreant of cystic fibrosis. Pediatr Pulmonol 2017; 52 (S48): S37-S43
  • 2 Aris RM, Merkel PA, Bachrach LK. , et al. Guide to bone health and disease in cystic fibrosis. J Clin Endocrinol Metab 2005; 90 (03) 1888-1896
  • 3 Sueblinvong V, Whittaker LA. Fertility and pregnancy: common concerns of the aging cystic fibrosis population. Clin Chest Med 2007; 28 (02) 433-443
  • 4 Moran A, Dunitz J, Nathan B, Saeed A, Holme B, Thomas W. Cystic fibrosis-related diabetes: current trends in prevalence, incidence, and mortality. Diabetes Care 2009; 32 (09) 1626-1631
  • 5 Marshall BC, Butler SM, Stoddard M, Moran AM, Liou TG, Morgan WJ. Epidemiology of cystic fibrosis-related diabetes. J Pediatr 2005; 146 (05) 681-687
  • 6 Lewis C, Blackman SM, Nelson A. , et al. Diabetes-related mortality in adults with cystic fibrosis. Role of genotype and sex. Am J Respir Crit Care Med 2015; 191 (02) 194-200
  • 7 Blackman SM, Commander CW, Watson C. , et al. Genetic modifiers of cystic fibrosis-related diabetes. Diabetes 2013; 62 (10) 3627-3635
  • 8 Blackman SM, Hsu S, Ritter SE. , et al. A susceptibility gene for type 2 diabetes confers substantial risk for diabetes complicating cystic fibrosis. Diabetologia 2009; 52 (09) 1858-1865
  • 9 Adler AI, Shine BSF, Chamnan P, Haworth CS, Bilton D. Genetic determinants and epidemiology of cystic fibrosis-related diabetes: results from a British cohort of children and adults. Diabetes Care 2008; 31 (09) 1789-1794
  • 10 Bradbury RA, Shirkhedkar D, Glanville AR, Campbell LV. Prior diabetes mellitus is associated with increased morbidity in cystic fibrosis patients undergoing bilateral lung transplantation: an ‘orphan’ area? A retrospective case-control study. Intern Med J 2009; 39 (06) 384-388
  • 11 Moran A, Becker D, Casella SJ. , et al; CFRD Consensus Conference Committee. Epidemiology, pathophysiology, and prognostic implications of cystic fibrosis-related diabetes: a technical review. Diabetes Care 2010; 33 (12) 2677-2683
  • 12 Finkelstein SM, Wielinski CL, Elliott GR. , et al. Diabetes mellitus associated with cystic fibrosis. J Pediatr 1988; 112 (03) 373-377
  • 13 Lanng S, Thorsteinsson B, Røder ME, Nerup J, Koch C. Insulin sensitivity and insulin clearance in cystic fibrosis patients with normal and diabetic glucose tolerance. Clin Endocrinol (Oxf) 1994; 41 (02) 217-223
  • 14 Lanng S, Thorsteinsson B, Nerup J, Koch C. Influence of the development of diabetes mellitus on clinical status in patients with cystic fibrosis. Eur J Pediatr 1992; 151 (09) 684-687
  • 15 Moran A, Pekow P, Grover P. , et al; Cystic Fibrosis Related Diabetes Therapy Study Group. Insulin therapy to improve BMI in cystic fibrosis-related diabetes without fasting hyperglycemia: results of the cystic fibrosis related diabetes therapy trial. Diabetes Care 2009; 32 (10) 1783-1788
  • 16 Yi Y, Norris AW, Wang K. , et al. Abnormal glucose tolerance in infants and young children with cystic fibrosis. Am J Respir Crit Care Med 2016; 194 (08) 974-980
  • 17 Ode KL, Frohnert B, Laguna T. , et al. Oral glucose tolerance testing in children with cystic fibrosis. Pediatr Diabetes 2010; 11 (07) 487-492
  • 18 Gottlieb PA, Yu L, Babu S. , et al. No relation between cystic fibrosis-related diabetes and type 1 diabetes autoimmunity. Diabetes Care 2012; 35 (08) e57
  • 19 Konrad K, Scheuing N, Badenhoop K. , et al. Cystic fibrosis-related diabetes compared with type 1 and type 2 diabetes in adults. Diabetes Metab Res Rev 2013; 29 (07) 568-575
  • 20 Kelly A, Moran A. Update on cystic fibrosis-related diabetes. J Cyst Fibros 2013; 12 (04) 318-331
  • 21 Arrigo T, Cucinotta D, Conti Nibali S. , et al. Longitudinal evaluation of glucose tolerance and insulin secretion in non-diabetic children and adolescents with cystic fibrosis: results of a two-year follow-up. Acta Paediatr 1993; 82 (03) 249-253
  • 22 Couce M, O'Brien TD, Moran A, Roche PC, Butler PC. Diabetes mellitus in cystic fibrosis is characterized by islet amyloidosis. J Clin Endocrinol Metab 1996; 81 (03) 1267-1272
  • 23 Kelly A, De Leon DD, Sheikh S. , et al. Islet hormone and incretin secretion in cystic fibrosis after four months of ivacaftor therapy. Am J Respir Crit Care Med 2019; 199 (03) 342-351
  • 24 Bellin MD, Laguna T, Leschyshyn J. , et al. Insulin secretion improves in cystic fibrosis following ivacaftor correction of CFTR: a small pilot study. Pediatr Diabetes 2013; 14 (06) 417-421
  • 25 Guo JH, Chen H, Ruan YC. , et al. Glucose-induced electrical activities and insulin secretion in pancreatic islet β-cells are modulated by CFTR. Nat Commun 2014; 5: 4420
  • 26 Sun X, Yi Y, Xie W. , et al. CFTR influences beta cell function and insulin secretion through non-cell autonomous exocrine-derived factors. Endocrinology 2017; 158 (10) 3325-3338
  • 27 Boom A, Lybaert P, Pollet J-F. , et al. Expression and localization of cystic fibrosis transmembrane conductance regulator in the rat endocrine pancreas. Endocrine 2007; 32 (02) 197-205
  • 28 Rowe SM, Heltshe SL, Gonska T. , et al; GOAL Investigators of the Cystic Fibrosis Foundation Therapeutics Development Network. Clinical mechanism of the cystic fibrosis transmembrane conductance regulator potentiator ivacaftor in G551D-mediated cystic fibrosis. Am J Respir Crit Care Med 2014; 190 (02) 175-184
  • 29 Hisert KB, Heltshe SL, Pope C. , et al. Restoring cystic fibrosis transmembrane conductance regulator function reduces airway bacteria and inflammation in people with cystic fibrosis and chronic lung infections. Am J Respir Crit Care Med 2017; 195 (12) 1617-1628
  • 30 Edlund A, Pedersen MG, Lindqvist A, Wierup N, Flodström-Tullberg M, Eliasson L. CFTR is involved in the regulation of glucagon secretion in human and rodent alpha cells. Sci Rep 2017; 7 (01) 90
  • 31 Moran A, Diem P, Klein DJ, Levitt MD, Robertson RP. Pancreatic endocrine function in cystic fibrosis. J Pediatr 1991; 118 (05) 715-723
  • 32 Moran A, Milla C, Ducret R, Nair KS. Protein metabolism in clinically stable adult cystic fibrosis patients with abnormal glucose tolerance. Diabetes 2001; 50 (06) 1336-1343
  • 33 Uc A, Olivier AK, Griffin MA. , et al. Glycaemic regulation and insulin secretion are abnormal in cystic fibrosis pigs despite sparing of islet cell mass. Clin Sci (Lond) 2015; 128 (02) 131-142
  • 34 Lanng S, Thorsteinsson B, Røder ME. , et al. Pancreas and gut hormone responses to oral glucose and intravenous glucagon in cystic fibrosis patients with normal, impaired, and diabetic glucose tolerance. Acta Endocrinol (Copenh) 1993; 128 (03) 207-214
  • 35 Cucinotta D, De Luca F, Gigante A. , et al. No changes of insulin sensitivity in cystic fibrosis patients with different degrees of glucose tolerance: an epidemiological and longitudinal study. Eur J Endocrinol 1994; 130 (03) 253-258
  • 36 Hardin DS, Ahn C, Rice J, Rice M, Rosenblatt R. Elevated gluconeogenesis and lack of suppression by insulin contribute to cystic fibrosis-related diabetes. J Investig Med 2008; 56 (03) 567-573
  • 37 Yki-Järvinen H, Sammalkorpi K, Koivisto VA, Nikkilä EA. Severity, duration, and mechanisms of insulin resistance during acute infections. J Clin Endocrinol Metab 1989; 69 (02) 317-323
  • 38 Levy E, Gurbindo C, Lacaille F, Paradis K, Thibault L, Seidman E. Circulating tumor necrosis factor-α levels and lipid abnormalities in patients with cystic fibrosis. Pediatr Res 1993; 34 (02) 162-166
  • 39 Colomba J, Boudreau V, Lehoux-Dubois C. , et al. The main mechanism associated with progression of glucose intolerance in older patients with cystic fibrosis is insulin resistance and not reduced insulin secretion capacity. J Cyst Fibros 2019; 18 (04) 551-556
  • 40 Hull RL, Gibson RL, McNamara S. , et al. Islet interleukin-1β immunoreactivity is an early feature of cystic fibrosis that may contribute to β-cell failure. Diabetes Care 2018; 41 (04) 823-830
  • 41 Hart NJ, Aramandla R, Poffenberger G. , et al. Cystic fibrosis-related diabetes is caused by islet loss and inflammation. JCI Insight 2018; 3 (08) 3
  • 42 Bogdani M, Blackman SM, Ridaura C, Bellocq J-P, Powers AC, Aguilar-Bryan L. Structural abnormalities in islets from very young children with cystic fibrosis may contribute to cystic fibrosis-related diabetes. Sci Rep 2017; 7 (01) 17231
  • 43 Clark A, Wells CA, Buley ID. , et al. Islet amyloid, increased A-cells, reduced B-cells and exocrine fibrosis: quantitative changes in the pancreas in type 2 diabetes. Diabetes Res 1988; 9 (04) 151-159
  • 44 Westwell-Roper C, Dai DL, Soukhatcheva G. , et al. IL-1 blockade attenuates islet amyloid polypeptide-induced proinflammatory cytokine release and pancreatic islet graft dysfunction. J Immunol 2011; 187 (05) 2755-2765
  • 45 Jin T. Current understanding on role of the Wnt signaling pathway effector TCF7L2 in glucose homeostasis. Endocr Rev 2016; 37 (03) 254-277
  • 46 Derbel S, Doumaguet C, Hubert D. , et al. Calpain 10 and development of diabetes mellitus in cystic fibrosis. J Cyst Fibros 2006; 5 (01) 47-51
  • 47 Horowitz M, Edelbroek MAL, Wishart JM, Straathof JW. Relationship between oral glucose tolerance and gastric emptying in normal healthy subjects. Diabetologia 1993; 36 (09) 857-862
  • 48 Wu T, Rayner CK, Horowitz M. Incretins. Handb Exp Pharmacol 2016; 233: 137-171
  • 49 Kuo P, Stevens JE, Russo A. , et al. Gastric emptying, incretin hormone secretion, and postprandial glycemia in cystic fibrosis--effects of pancreatic enzyme supplementation. J Clin Endocrinol Metab 2011; 96 (05) E851-E855
  • 50 Cucinotta D, De Luca F, Arrigo T. , et al. First-phase insulin response to intravenous glucose in cystic fibrosis patients with different degrees of glucose tolerance. J Pediatr Endocrinol Metab 1994; 7 (01) 13-17
  • 51 Geyer MC, Sullivan T, Tai A. , et al. Exenatide corrects postprandial hyperglycaemia in young people with cystic fibrosis and impaired glucose tolerance: a randomized crossover trial. Diabetes Obes Metab 2019; 21 (03) 700-704
  • 52 Perano S, Rayner CK, Couper J, Martin J, Horowitz M. Cystic fibrosis related diabetes--a new perspective on the optimal management of postprandial glycemia. J Diabetes Complications 2014; 28 (06) 904-911
  • 53 Moran A, Brunzell C, Cohen RC. , et al; CFRD Guidelines Committee. Clinical care guidelines for cystic fibrosis-related diabetes: a position statement of the American Diabetes Association and a clinical practice guideline of the Cystic Fibrosis Foundation, endorsed by the Pediatric Endocrine Society. Diabetes Care 2010; 33 (12) 2697-2708
  • 54 Moran A, Pillay K, Becker DJ, Acerini CL. ; International Society for Pediatric and Adolescent Diabetes. ISPAD Clinical Practice Consensus guidelines 2014. Management of cystic fibrosis-related diabetes in children and adolescents. Pediatr Diabetes 2014; 15 (Suppl. 20) 65-76
  • 55 Lanng S, Hansen A, Thorsteinsson B, Nerup J, Koch C. Glucose tolerance in patients with cystic fibrosis: five year prospective study. BMJ 1995; 311 (7006): 655-659
  • 56 Brodsky J, Dougherty S, Makani R, Rubenstein RC, Kelly A. Elevation of 1-hour plasma glucose during oral glucose tolerance testing is associated with worse pulmonary function in cystic fibrosis. Diabetes Care 2011; 34 (02) 292-295
  • 57 Hameed S, Morton JR, Jaffé A. , et al. Early glucose abnormalities in cystic fibrosis are preceded by poor weight gain. Diabetes Care 2010; 33 (02) 221-226
  • 58 Lombardo F, De Luca F, Rosano M. , et al. Natural history of glucose tolerance, beta-cell function and peripheral insulin sensitivity in cystic fibrosis patients with fasting euglycemia. Eur J Endocrinol 2003; 149 (01) 53-59
  • 59 Merjaneh L, He Q, Long Q, Phillips LS, Stecenko AA. Disposition index identifies defective beta-cell function in cystic fibrosis subjects with normal glucose tolerance. J Cyst Fibros 2015; 14 (01) 135-141
  • 60 Chan CLPL, Vigers T, Zemanick ET, Zeitler PS, Sagel SD, Nadeau KJ. Continuous glucose monitoring reveals glucose abnormalities in CF youth despite normal OGTT. Paper presented at: North American Cystic Fibrosis Conference; 2015; Phoenix, AZ
  • 61 Ode KL, Moran A. New insights into cystic fibrosis-related diabetes in children. Lancet Diabetes Endocrinol 2013; 1 (01) 52-58
  • 62 2014 Annual Data Report - Cystic Fibrosis Foundation Patient Registry. Bethesda, MD: Cystic Fibrosis Foundation; 2015
  • 63 Scheuing N, Berger G, Bergis D. , et al; German/Austrian Diabetes Prospective Documentation (DPV) Initiative. Adherence to clinical care guidelines for cystic fibrosis-related diabetes in 659 German/Austrian patients. J Cyst Fibros 2014; 13 (06) 730-736
  • 64 Frohnert BI, Ode KL, Moran A. , et al. Impaired fasting glucose in cystic fibrosis. Diabetes Care 2010; 33 (12) 2660-2664
  • 65 Holl RW, Buck C, Babka C, Wolf A, Thon A. HbA1c is not recommended as a screening test for diabetes in cystic fibrosis. Diabetes Care 2000; 23 (01) 126
  • 66 Chan CL, Hope E, Thurston J. , et al. Hemoglobin A1c accurately predicts continuous glucose monitoring-derived average glucose in youth and young adults with cystic fibrosis. Diabetes Care 2018; 41 (07) 1406-1413
  • 67 Olson DE, Rhee MK, Herrick K, Ziemer DC, Twombly JG, Phillips LS. Screening for diabetes and pre-diabetes with proposed A1C-based diagnostic criteria. Diabetes Care 2010; 33 (10) 2184-2189
  • 68 Burgess JC, Bridges N, Banya W. , et al. HbA1c as a screening tool for cystic fibrosis related diabetes. J Cyst Fibros 2016; 15 (02) 251-257
  • 69 Boudreau V, Coriati A, Desjardins K, Rabasa-Lhoret R. Glycated hemoglobin cannot yet be proposed as a screening tool for cystic fibrosis related diabetes. J Cyst Fibros 2016; 15 (02) 258-260
  • 70 Lam GY, Doll-Shankaruk M, Dayton J. , et al. The use of fructosamine in cystic fibrosis-related diabetes (CFRD) screening. J Cyst Fibros 2018; 17 (01) 121-124
  • 71 Kinnaird KE, Sauerwein TJ. Lack of correlation between 1,5-anhydroglucitol assay and oral glucose tolerance test in patients with cystic fibrosis. Endocr Pract 2010; 16 (02) 167-170
  • 72 O'Riordan SM, Hindmarsh P, Hill NR. , et al. Validation of continuous glucose monitoring in children and adolescents with cystic fibrosis: a prospective cohort study. Diabetes Care 2009; 32 (06) 1020-1022
  • 73 Dobson L, Sheldon CD, Hattersley AT. Conventional measures underestimate glycaemia in cystic fibrosis patients. Diabet Med 2004; 21 (07) 691-696
  • 74 Franzese A, Valerio G, Buono P. , et al. Continuous glucose monitoring system in the screening of early glucose derangements in children and adolescents with cystic fibrosis. J Pediatr Endocrinol Metab 2008; 21 (02) 109-116
  • 75 Chan CL, Vigers T, Pyle L, Zeitler PS, Sagel SD, Nadeau KJ. Continuous glucose monitoring abnormalities in cystic fibrosis youth correlate with pulmonary function decline. J Cyst Fibros 2018; 17 (06) 783-790
  • 76 Moreau F, Weiller MA, Rosner V. , et al. Continuous glucose monitoring in cystic fibrosis patients according to the glucose tolerance. Horm Metab Res 2008; 40 (07) 502-506
  • 77 Beck RW, Riddlesworth T, Ruedy K. , et al; DIAMOND Study Group. Effect of continuous glucose monitoring on glycemic control in adults with type 1 diabetes using insulin injections: the DIAMOND randomized clinical trial. JAMA 2017; 317 (04) 371-378
  • 78 Beck RW, Riddlesworth TD, Ruedy K. , et al; DIAMOND Study Group. Continuous glucose monitoring versus usual care in patients with type 2 diabetes receiving multiple daily insulin injections: a randomized trial. Ann Intern Med 2017; 167 (06) 365-374
  • 79 Rachmiel M, Landau Z, Boaz M. , et al. The use of continuous glucose monitoring systems in a pediatric population with type 1 diabetes mellitus in real-life settings: the AWeSoMe Study Group experience. Acta Diabetol 2015; 52 (02) 323-329
  • 80 Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group. Effectiveness of continuous glucose monitoring in a clinical care environment: evidence from the Juvenile Diabetes Research Foundation continuous glucose monitoring (JDRF-CGM) trial. Diabetes Care 2010; 33 (01) 17-22
  • 81 Scheuing N, Badenhoop K, Borkenstein M. , et al; German/Austrian Diabetes Prospective Documentation Initiative. Why is insulin pump treatment rarely used in adolescents and young adults with cystic fibrosis-related diabetes?. Pediatr Diabetes 2015; 16 (01) 10-15
  • 82 Frost F, Dyce P, Nazareth D, Malone V, Walshaw MJ. Continuous glucose monitoring guided insulin therapy is associated with improved clinical outcomes in cystic fibrosis-related diabetes. J Cyst Fibros 2018; 17 (06) 798-803
  • 83 Brennan AL, Gyi KM, Wood DM. , et al. Airway glucose concentrations and effect on growth of respiratory pathogens in cystic fibrosis. J Cyst Fibros 2007; 6 (02) 101-109
  • 84 Wood DM, Brennan AL, Philips BJ, Baker EH. Effect of hyperglycaemia on glucose concentration of human nasal secretions. Clin Sci (Lond) 2004; 106 (05) 527-533
  • 85 Adler AI, Shine B, Haworth C, Leelarathna L, Bilton D. Hyperglycemia and death in cystic fibrosis-related diabetes. Diabetes Care 2011; 34 (07) 1577-1578
  • 86 Chamnan P, Shine BS, Haworth CS, Bilton D, Adler AI. Diabetes as a determinant of mortality in cystic fibrosis. Diabetes Care 2010; 33 (02) 311-316
  • 87 Birch L, Lithander FE, Hewer SL, Harriman K, Hamilton-Shield J, Perry R. Dietary interventions for managing glucose abnormalities in cystic fibrosis: a systematic review protocol. Syst Rev 2018; 7 (01) 98
  • 88 Solomon MP, Wilson DC, Corey M. , et al. Glucose intolerance in children with cystic fibrosis. J Pediatr 2003; 142 (02) 128-132
  • 89 Soave D, Miller MR, Keenan K. , et al. Evidence for a causal relationship between early exocrine pancreatic disease and cystic fibrosis-related diabetes: a Mendelian randomization study. Diabetes 2014; 63 (06) 2114-2119
  • 90 Konstan MW, Butler SM, Wohl ME. , et al; Investigators and Coordinators of the Epidemiologic Study of Cystic Fibrosis. Growth and nutritional indexes in early life predict pulmonary function in cystic fibrosis. J Pediatr 2003; 142 (06) 624-630
  • 91 Yen EH, Quinton H, Borowitz D. Better nutritional status in early childhood is associated with improved clinical outcomes and survival in patients with cystic fibrosis. J Pediatr 2013; 162 (03) 530.e1-535.e1
  • 92 Corey M, McLaughlin FJ, Williams M, Levison H. A comparison of survival, growth, and pulmonary function in patients with cystic fibrosis in Boston and Toronto. J Clin Epidemiol 1988; 41 (06) 583-591
  • 93 Zemel BS, Jawad AF, FitzSimmons S, Stallings VA. Longitudinal relationship among growth, nutritional status, and pulmonary function in children with cystic fibrosis: analysis of the Cystic Fibrosis Foundation National CF Patient Registry. J Pediatr 2000; 137 (03) 374-380
  • 94 Yung B, Noormohamed FH, Kemp M, Hooper J, Lant AF, Hodson ME. Cystic fibrosis-related diabetes: the role of peripheral insulin resistance and beta-cell dysfunction. Diabet Med 2002; 19 (03) 221-226
  • 95 Battezzati A, Mari A, Zazzeron L. , et al. Identification of insulin secretory defects and insulin resistance during oral glucose tolerance test in a cohort of cystic fibrosis patients. Eur J Endocrinol 2011; 165 (01) 69-76
  • 96 Street ME, Spaggiari C, Ziveri MA. , et al. Insulin production and resistance in cystic fibrosis: effect of age, disease activity, and genotype. J Endocrinol Invest 2012; 35 (03) 246-253
  • 97 Hardin DS, LeBlanc A, Para L, Seilheimer DK. Hepatic insulin resistance and defects in substrate utilization in cystic fibrosis. Diabetes 1999; 48 (05) 1082-1087
  • 98 Onady GM, Stolfi A. Insulin and oral agents for managing cystic fibrosis-related diabetes. Cochrane Database Syst Rev 2005; (03) CD004730
  • 99 Moheet A, Moran A. Pharmacological management of cystic fibrosis related diabetes. Expert Rev Clin Pharmacol 2018; 11 (02) 185-191
  • 100 Alicandro G, Battezzati PM, Battezzati A. , et al. Insulin secretion, nutritional status and respiratory function in cystic fibrosis patients with normal glucose tolerance. Clin Nutr 2012; 31 (01) 118-123
  • 101 Rasouli N, Seggelke S, Gibbs J. , et al. Cystic fibrosis-related diabetes in adults: inpatient management of 121 patients during 410 admissions. J Diabetes Sci Technol 2012; 6 (05) 1038-1044
  • 102 Grover P, Thomas W, Moran A. Glargine versus NPH insulin in cystic fibrosis related diabetes. J Cyst Fibros 2008; 7 (02) 134-136
  • 103 Hardin DS, Rice J, Rice M, Rosenblatt R. Use of the insulin pump in treat cystic fibrosis related diabetes. J Cyst Fibros 2009; 8 (03) 174-178
  • 104 Moran A, Pillay K, Becker D, Granados A, Hameed S, Acerini CL. ISPAD Clinical Practice Consensus Guidelines 2018: management of cystic fibrosis-related diabetes in children and adolescents. Pediatr Diabetes 2018; 19 (Suppl. 27) 64-74
  • 105 Scheuing N, Thon A, Konrad K. , et al; German/Austrian Diabetes Prospective Documentation Initiative and the BMBF Competence Network Diabetes Mellitus. Carbohydrate intake and insulin requirement in children, adolescents and young adults with cystic fibrosis-related diabetes: A multicenter comparison to type 1 diabetes. Clin Nutr 2015; 34 (04) 732-738
  • 106 Sunni M, Bellin MD, Moran A. Exogenous insulin requirements do not differ between youth and adults with cystic fibrosis related diabetes. Pediatr Diabetes 2013; 14 (04) 295-298
  • 107 Widger J, Oliver MR, O'Connell M, Cameron FJ, Ranganathan S, Robinson PJ. Glucose tolerance during pulmonary exacerbations in children with cystic fibrosis. PLoS One 2012; 7 (09) e44844
  • 108 Hollander FM, de Roos NM, Belle van Meerkerk G, Teding van Berkhout F, Heijerman HGM, van de Graaf EA. Body weight and body mass index in patients with end-stage cystic fibrosis stabilize after the start of enteral tube feeding. J Acad Nutr Diet 2017; 117 (11) 1808-1815
  • 109 Koloušková S, Zemková D, Bartošová J. , et al. Low-dose insulin therapy in patients with cystic fibrosis and early-stage insulinopenia prevents deterioration of lung function: a 3-year prospective study. J Pediatr Endocrinol Metab 2011; 24 (7–8): 449-454
  • 110 Mozzillo E, Franzese A, Valerio G. , et al. One-year glargine treatment can improve the course of lung disease in children and adolescents with cystic fibrosis and early glucose derangements. Pediatr Diabetes 2009; 10 (03) 162-167
  • 111 Bizzarri C, Lucidi V, Ciampalini P, Bella S, Russo B, Cappa M. Clinical effects of early treatment with insulin glargine in patients with cystic fibrosis and impaired glucose tolerance. J Endocrinol Invest 2006; 29 (03) RC1-RC4
  • 112 Hameed S, Morton JR, Field PI. , et al. Once daily insulin detemir in cystic fibrosis with insulin deficiency. Arch Dis Child 2012; 97 (05) 464-467
  • 113 Dobson L, Hattersley AT, Tiley S, Elworthy S, Oades PJ, Sheldon CD. Clinical improvement in cystic fibrosis with early insulin treatment. Arch Dis Child 2002; 87 (05) 430-431
  • 114 Minicucci L, Haupt M, Casciaro R. , et al. Slow-release insulin in cystic fibrosis patients with glucose intolerance: a randomized clinical trial. Pediatr Diabetes 2012; 13 (02) 197-202
  • 115 Ballmann M, Hubert D, Assael BM. , et al; CFRD Study Group. Repaglinide versus insulin for newly diagnosed diabetes in patients with cystic fibrosis: a multicentre, open-label, randomised trial. Lancet Diabetes Endocrinol 2018; 6 (02) 114-121
  • 116 Hillman M, Eriksson L, Mared L, Helgesson K, Landin-Olsson M. Reduced levels of active GLP-1 in patients with cystic fibrosis with and without diabetes mellitus. J Cyst Fibros 2012; 11 (02) 144-149
  • 117 Perano SJ, Couper JJ, Horowitz M. , et al. Pancreatic enzyme supplementation improves the incretin hormone response and attenuates postprandial glycemia in adolescents with cystic fibrosis: a randomized crossover trial. J Clin Endocrinol Metab 2014; 99 (07) 2486-2493
  • 118 Norris AW, Ode KL, Merjaneh L. , et al. Survival in a bad neighborhood: pancreatic islets in cystic fibrosis. J Endocrinol 2019; 241 (01) R35-R50
  • 119 Hayes Jr D, McCoy KS, Sheikh SI. Resolution of cystic fibrosis-related diabetes with ivacaftor therapy. Am J Respir Crit Care Med 2014; 190 (05) 590-591
  • 120 Aris RM, Renner JB, Winders AD. , et al. Increased rate of fractures and severe kyphosis: sequelae of living into adulthood with cystic fibrosis. Ann Intern Med 1998; 128 (03) 186-193
  • 121 Henderson RC, Specter BB. Kyphosis and fractures in children and young adults with cystic fibrosis. J Pediatr 1994; 125 (02) 208-212
  • 122 Bianchi ML, Romano G, Saraifoger S, Costantini D, Limonta C, Colombo C. BMD and body composition in children and young patients affected by cystic fibrosis. J Bone Miner Res 2006; 21 (03) 388-396
  • 123 Conway SP, Morton AM, Oldroyd B. , et al. Osteoporosis and osteopenia in adults and adolescents with cystic fibrosis: prevalence and associated factors. Thorax 2000; 55 (09) 798-804
  • 124 Grey V, Atkinson S, Drury D. , et al. Prevalence of low bone mass and deficiencies of vitamins D and K in pediatric patients with cystic fibrosis from 3 Canadian centers. Pediatrics 2008; 122 (05) 1014-1020
  • 125 Henderson RC, Madsen CD. Bone density in children and adolescents with cystic fibrosis. J Pediatr 1996; 128 (01) 28-34
  • 126 Kelly A, Schall J, Stallings VA, Zemel BS. Trabecular and cortical bone deficits are present in children and adolescents with cystic fibrosis. Bone 2016; 90: 7-14
  • 127 Paccou J, Zeboulon N, Combescure C, Gossec L, Cortet B. The prevalence of osteoporosis, osteopenia, and fractures among adults with cystic fibrosis: a systematic literature review with meta-analysis. Calcif Tissue Int 2010; 86 (01) 1-7
  • 128 Grey AB, Ames RW, Matthews RD, Reid IR. Bone mineral density and body composition in adult patients with cystic fibrosis. Thorax 1993; 48 (06) 589-593
  • 129 Haworth CS, Selby PL, Webb AK. , et al. Low bone mineral density in adults with cystic fibrosis. Thorax 1999; 54 (11) 961-967
  • 130 Legroux-Gérot I, Leroy S, Prudhomme C. , et al. Bone loss in adults with cystic fibrosis: prevalence, associated factors, and usefulness of biological markers. Joint Bone Spine 2012; 79 (01) 73-77
  • 131 Sheikh S, Gemma S, Patel A. Factors associated with low bone mineral density in patients with cystic fibrosis. J Bone Miner Metab 2015; 33 (02) 180-185
  • 132 Putman MS, Milliren CE, Derrico N. , et al. Compromised bone microarchitecture and estimated bone strength in young adults with cystic fibrosis. J Clin Endocrinol Metab 2014; 99 (09) 3399-3407
  • 133 Putman MS, Greenblatt LB, Sicilian L. , et al. Young adults with cystic fibrosis have altered trabecular microstructure by ITS-based morphological analysis. Osteoporos Int 2016; 27 (08) 2497-2505
  • 134 Nishiyama KK, Agarwal S, Kepley A. , et al. Adults with cystic fibrosis have deficits in bone structure and strength at the distal tibia despite similar size and measuring standard and relative sites. Bone 2018; 107: 181-187
  • 135 Gensburger D, Boutroy S, Chapurlat R. , et al. Reduced bone volumetric density and weak correlation between infection and bone markers in cystic fibrosis adult patients. Osteoporos Int 2016; 27 (09) 2803-2813
  • 136 Rossini M, Del Marco A, Dal Santo F. , et al. Prevalence and correlates of vertebral fractures in adults with cystic fibrosis. Bone 2004; 35 (03) 771-776
  • 137 Stephenson A, Jamal S, Dowdell T, Pearce D, Corey M, Tullis E. Prevalence of vertebral fractures in adults with cystic fibrosis and their relationship to bone mineral density. Chest 2006; 130 (02) 539-544
  • 138 Putman MS, Baker JF, Uluer A. , et al. Trends in bone mineral density in young adults with cystic fibrosis over a 15 year period. J Cyst Fibros 2015; 14 (04) 526-532
  • 139 Rana M, Munns CF, Selvadurai H, Briody J, Craig ME. The impact of dysglycaemia on bone mineral accrual in young people with cystic fibrosis. Clin Endocrinol (Oxf) 2013; 78 (01) 36-42
  • 140 Shead EF, Haworth CS, Barker H, Bilton D, Compston JE. Osteoclast function, bone turnover and inflammatory cytokines during infective exacerbations of cystic fibrosis. J Cyst Fibros 2010; 9 (02) 93-98
  • 141 Haworth CS, Webb AK, Egan JJ. , et al. Bone histomorphometry in adult patients with cystic fibrosis. Chest 2000; 118 (02) 434-439
  • 142 Aris RM, Ontjes DA, Buell HE. , et al. Abnormal bone turnover in cystic fibrosis adults. Osteoporos Int 2002; 13 (02) 151-157
  • 143 Baroncelli GI, De Luca F, Magazzú G. , et al. Bone demineralization in cystic fibrosis: evidence of imbalance between bone formation and degradation. Pediatr Res 1997; 41 (03) 397-403
  • 144 Shead EF, Haworth CS, Condliffe AM, McKeon DJ, Scott MA, Compston JE. Cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in human bone. Thorax 2007; 62 (07) 650-651
  • 145 Dif F, Marty C, Baudoin C, de Vernejoul MC, Levi G. Severe osteopenia in CFTR-null mice. Bone 2004; 35 (03) 595-603
  • 146 Haston CK, Li W, Li A, Lafleur M, Henderson JE. Persistent osteopenia in adult cystic fibrosis transmembrane conductance regulator-deficient mice. Am J Respir Crit Care Med 2008; 177 (03) 309-315
  • 147 Pashuck TD, Franz SE, Altman MK. , et al. Murine model for cystic fibrosis bone disease demonstrates osteopenia and sex-related differences in bone formation. Pediatr Res 2009; 65 (03) 311-316
  • 148 Le Henaff C, Gimenez A, Haÿ E, Marty C, Marie P, Jacquot J. The F508del mutation in cystic fibrosis transmembrane conductance regulator gene impacts bone formation. Am J Pathol 2012; 180 (05) 2068-2075
  • 149 Paradis J, Wilke M, Haston CK. Osteopenia in Cftr-deltaF508 mice. J Cyst Fibros 2010; 9 (04) 239-245
  • 150 Velard F, Delion M, Le Henaff C. , et al. Cystic fibrosis and bone disease: defective osteoblast maturation with the F508del mutation in cystic fibrosis transmembrane conductance regulator. Am J Respir Crit Care Med 2014; 189 (06) 746-748
  • 151 Delion M, Braux J, Jourdain ML. , et al. Overexpression of RANKL in osteoblasts: a possible mechanism of susceptibility to bone disease in cystic fibrosis. J Pathol 2016; 240 (01) 50-60
  • 152 Sermet-Gaudelus I, Bianchi ML, Garabédian M. , et al. European cystic fibrosis bone mineralisation guidelines. J Cyst Fibros 2011; 10 (Suppl. 02) S16-S23
  • 153 Tangpricha V, Kelly A, Stephenson A. , et al; Cystic Fibrosis Foundation Vitamin D Evidence-Based Review Committee. An update on the screening, diagnosis, management, and treatment of vitamin D deficiency in individuals with cystic fibrosis: evidence-based recommendations from the Cystic Fibrosis Foundation. J Clin Endocrinol Metab 2012; 97 (04) 1082-1093
  • 154 Gordon CM, Leonard MB, Zemel BS. ; International Society for Clinical Densitometry. 2013 Pediatric Position Development Conference: executive summary and reflections. J Clin Densitom 2014; 17 (02) 219-224
  • 155 Stallings VA, Stark LJ, Robinson KA, Feranchak AP, Quinton H. ; Clinical Practice Guidelines on Growth and Nutrition Subcommittee; Ad Hoc Working Group. Evidence-based practice recommendations for nutrition-related management of children and adults with cystic fibrosis and pancreatic insufficiency: results of a systematic review. J Am Diet Assoc 2008; 108 (05) 832-839
  • 156 Curhan GC, Willett WC, Speizer FE, Spiegelman D, Stampfer MJ. Comparison of dietary calcium with supplemental calcium and other nutrients as factors affecting the risk for kidney stones in women. Ann Intern Med 1997; 126 (07) 497-504
  • 157 Putman MS, Haagensen A, Neuringer I, Sicilian L. Celiac disease in patients with cystic fibrosis-related bone disease. Case Rep Endocrinol 2017; 2017: 2652403
  • 158 Zanchetta MB, Longobardi V, Bai JC. Bone and celiac disease. Curr Osteoporos Rep 2016; 14 (02) 43-48
  • 159 Behre HM, Kliesch S, Leifke E, Link TM, Nieschlag E. Long-term effect of testosterone therapy on bone mineral density in hypogonadal men. J Clin Endocrinol Metab 1997; 82 (08) 2386-2390
  • 160 Katznelson L, Finkelstein JS, Schoenfeld DA, Rosenthal DI, Anderson EJ, Klibanski A. Increase in bone density and lean body mass during testosterone administration in men with acquired hypogonadism. J Clin Endocrinol Metab 1996; 81 (12) 4358-4365
  • 161 Finkelstein JS, Klibanski A, Neer RM. , et al. Increases in bone density during treatment of men with idiopathic hypogonadotropic hypogonadism. J Clin Endocrinol Metab 1989; 69 (04) 776-783
  • 162 Warren MP, Brooks-Gunn J, Fox RP. , et al. Persistent osteopenia in ballet dancers with amenorrhea and delayed menarche despite hormone therapy: a longitudinal study. Fertil Steril 2003; 80 (02) 398-404
  • 163 Klibanski A, Biller BM, Schoenfeld DA, Herzog DB, Saxe VC. The effects of estrogen administration on trabecular bone loss in young women with anorexia nervosa. J Clin Endocrinol Metab 1995; 80 (03) 898-904
  • 164 Strokosch GR, Friedman AJ, Wu SC, Kamin M. Effects of an oral contraceptive (norgestimate/ethinyl estradiol) on bone mineral density in adolescent females with anorexia nervosa: a double-blind, placebo-controlled study. J Adolesc Health 2006; 39 (06) 819-827
  • 165 Misra M, Katzman D, Miller KK. , et al. Physiologic estrogen replacement increases bone density in adolescent girls with anorexia nervosa. J Bone Miner Res 2011; 26 (10) 2430-2438
  • 166 Aris RM, Lester GE, Renner JB. , et al. Efficacy of pamidronate for osteoporosis in patients with cystic fibrosis following lung transplantation. Am J Respir Crit Care Med 2000; 162 (3, Pt 1): 941-946
  • 167 Aris RM, Lester GE, Caminiti M. , et al. Efficacy of alendronate in adults with cystic fibrosis with low bone density. Am J Respir Crit Care Med 2004; 169 (01) 77-82
  • 168 Boyle MP, Lechtzin N, Watts S. Zoledronate therapy for decreased bone density in adults with cystic fibrosis. . (abstract). Pediatr Pulmonol 2005; 40 (S28): 353
  • 169 Haworth CS, Selby PL, Adams JE, Mawer EB, Horrocks AW, Webb AK. Effect of intravenous pamidronate on bone mineral density in adults with cystic fibrosis. Thorax 2001; 56 (04) 314-316
  • 170 Papaioannou A, Kennedy CC, Freitag A. , et al. Alendronate once weekly for the prevention and treatment of bone loss in Canadian adult cystic fibrosis patients (CFOS trial). Chest 2008; 134 (04) 794-800
  • 171 Chapman I, Greville H, Ebeling PR. , et al. Intravenous zoledronate improves bone density in adults with cystic fibrosis (CF). Clin Endocrinol (Oxf) 2009; 70 (06) 838-846
  • 172 Haworth CS, Sharples L, Hughes V. , et al. Multicentre trial of weekly risedronate on bone density in adults with cystic fibrosis. J Cyst Fibros 2011; 10 (06) 470-476
  • 173 Bianchi ML, Colombo C, Assael BM. , et al. Treatment of low bone density in young people with cystic fibrosis: a multicentre, prospective, open-label observational study of calcium and calcifediol followed by a randomised placebo-controlled trial of alendronate. Lancet Respir Med 2013; 1 (05) 377-385
  • 174 Conwell LS, Chang AB. Bisphosphonates for osteoporosis in people with cystic fibrosis. Cochrane Database Syst Rev 2014; (03) CD002010
  • 175 Eastell R, Rosen CJ, Black DM, Cheung AM, Murad MH, Shoback D. Pharmacological management of osteoporosis in postmenopausal women: an endocrine society* clinical practice guideline. J Clin Endocrinol Metab 2019; 104 (05) 1595-1622
  • 176 Le Henaff C, Haÿ E, Velard F. , et al. Enhanced F508del-CFTR channel activity ameliorates bone pathology in murine cystic fibrosis. Am J Pathol 2014; 184 (04) 1132-1141
  • 177 Sermet-Gaudelus I, Delion M, Durieu I, Jacquot J, Hubert D. Bone demineralization is improved by ivacaftor in patients with cystic fibrosis carrying the p.Gly551Asp mutation. J Cyst Fibros 2016; 15 (06) e67-e69
  • 178 Velard F, Delion M, Lemaire F. , et al. Cystic fibrosis bone disease: is the CFTR corrector C18 an option for therapy?. Eur Respir J 2015; 45 (03) 845-848
  • 179 McCallum TJ, Milunsky JM, Cunningham DL, Harris DH, Maher TA, Oates RD. Fertility in men with cystic fibrosis: an update on current surgical practices and outcomes. Chest 2000; 118 (04) 1059-1062
  • 180 Taussig LM, Lobeck CC, di Sant'Agnese PA, Ackerman DR, Kattwinkel J. Fertility in males with cystic fibrosis. N Engl J Med 1972; 287 (12) 586-589
  • 181 Kaplan E, Shwachman H, Perlmutter AD, Rule A, Khaw KT, Holsclaw DS. Reproductive failure in males with cystic fibrosis. N Engl J Med 1968; 279 (02) 65-69
  • 182 Chillón M, Casals T, Mercier B. , et al. Mutations in the cystic fibrosis gene in patients with congenital absence of the vas deferens. N Engl J Med 1995; 332 (22) 1475-1480
  • 183 Chen H, Ruan YC, Xu WM, Chen J, Chan HC. Regulation of male fertility by CFTR and implications in male infertility. Hum Reprod Update 2012; 18 (06) 703-713
  • 184 Sokol RZ. Infertility in men with cystic fibrosis. Curr Opin Pulm Med 2001; 7 (06) 421-426
  • 185 Donovan Jr DS, Papadopoulos A, Staron RB. , et al. Bone mass and vitamin D deficiency in adults with advanced cystic fibrosis lung disease. Am J Respir Crit Care Med 1998; 157 (6, Pt 1): 1892-1899
  • 186 Leifke E, Friemert M, Heilmann M. , et al. Sex steroids and body composition in men with cystic fibrosis. Eur J Endocrinol 2003; 148 (05) 551-557
  • 187 Blackman SM, Tangpricha V. Endocrine disorders in cystic fibrosis. Pediatr Clin North Am 2016; 63 (04) 699-708
  • 188 Stead RJ, Hodson ME, Batten JC, Adams J, Jacobs HS. Amenorrhoea in cystic fibrosis. Clin Endocrinol (Oxf) 1987; 26 (02) 187-195
  • 189 Johannesson M, Landgren BM, Csemiczky G, Hjelte L, Gottlieb C. Female patients with cystic fibrosis suffer from reproductive endocrinological disorders despite good clinical status. Hum Reprod 1998; 13 (08) 2092-2097
  • 190 Shteinberg M, Lulu AB, Downey DG. , et al. Failure to conceive in women with CF is associated with pancreatic insufficiency and advancing age. J Cyst Fibros 2019; 18 (04) 525-529
  • 191 Kopito LE, Kosasky HJ, Shwachman H. Water and electrolytes in cervical mucus from patients with cystic fibrosis. Fertil Steril 1973; 24 (07) 512-516
  • 192 Schram CA, Stephenson AL, Hannam TG, Tullis E. Cystic fibrosis (cf) and ovarian reserve: a cross-sectional study examining serum anti-mullerian hormone (amh) in young women. J Cyst Fibros 2015; 14 (03) 398-402
  • 193 Edenborough FP, Borgo G, Knoop C. , et al; European Cystic Fibrosis Society. Guidelines for the management of pregnancy in women with cystic fibrosis. J Cyst Fibros 2008; 7 (Suppl. 01) S2-S32