Semin Respir Crit Care Med 2019; 40(04): 465-475
DOI: 10.1055/s-0039-1696689
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Biomarkers of Infection: Are They Useful in the ICU?

Eva Heilmann
1   Medical University Department of Internal Medicine, Kantonsspital Aarau, Aarau, Switzerland
,
Claudia Gregoriano
1   Medical University Department of Internal Medicine, Kantonsspital Aarau, Aarau, Switzerland
,
Philipp Schuetz
1   Medical University Department of Internal Medicine, Kantonsspital Aarau, Aarau, Switzerland
2   Faculty of Medicine, University of Basel, Switzerland
› Author Affiliations
Further Information

Publication History

Publication Date:
04 October 2019 (online)

Abstract

Biomarkers are increasingly used in patients with serious infections in the critical care setting to complement clinical judgment and interpretation of other diagnostic and prognostic tests. The main purposes of such blood markers are (1) to improve infection diagnosis (i.e., differentiation between bacterial vs. viral vs. fungal vs. noninfectious), (2) to help in the early risk stratification and thus provide prognostic information regarding the risk for mortality and other adverse outcomes, and (3) to optimize antibiotic tailoring to individual needs of patients (“antibiotic stewardship”).

Especially in critically ill patients, in whom sepsis is a major cause of morbidity and mortality, rapid diagnosis is desirable to start timely and specific treatment.

Besides some biomarkers, such as procalcitonin, which is well established and has shown positive effects in regard to utilization of antimicrobials and clinical outcomes, there is a growing number of novel markers from different pathophysiological pathways, where the final proof of an added value to clinical judgment and ultimately clinical benefit to patients is still lacking.

Without a doubt, the addition of blood biomarkers to clinical medicine has had a strong impact on the way we care for patients today. Recent trials show that as an adjunct to other clinical and laboratory parameters these markers provide important information about risks for bacterial infection and resolution of infection. Moreover, biomarkers can help to optimize management of patients with serious illness in the intensive care unit, thereby offering more individualized treatment courses with overall improvements in clinical outcomes.

Financial Disclosures

Prof. Schuetz reports receiving grants from bioMerieux, Thermo Fisher, and Roche Diagnostics (paid to the Institution).


 
  • References

  • 1 Strimbu K, Tavel JA. What are biomarkers?. Curr Opin HIV AIDS 2010; 5 (06) 463-466
  • 2 Schuetz P, Aujesky D, Müller C, Müller B. Biomarker-guided personalised emergency medicine for all - hope for another hype?. Swiss Med Wkly 2015; 145: w14079
  • 3 van Engelen TSR, Wiersinga WJ, Scicluna BP, van der Poll T. Biomarkers in Sepsis. Crit Care Clin 2018; 34 (01) 139-152
  • 4 Schuetz P, Christ-Crain M, Müller B. Procalcitonin and other biomarkers to improve assessment and antibiotic stewardship in infections--hope for hype?. Swiss Med Wkly 2009; 139 (23–24): 318-326
  • 5 Schuetz P, Raad I, Amin DN. Using procalcitonin-guided algorithms to improve antimicrobial therapy in ICU patients with respiratory infections and sepsis. Curr Opin Crit Care 2013; 19 (05) 453-460
  • 6 Singer M, Deutschman CS, Seymour CW. , et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016; 315 (08) 801-810
  • 7 Larsen FF, Petersen JA. Novel biomarkers for sepsis: a narrative review. Eur J Intern Med 2017; 45: 46-50
  • 8 Sager R, Kutz A, Mueller B, Schuetz P. Procalcitonin-guided diagnosis and antibiotic stewardship revisited. BMC Med 2017; 15 (01) 15
  • 9 Laukemann S, Kasper N, Kulkarni P. , et al. Can we reduce negative blood cultures with clinical scores and blood markers? Results from an observational cohort study. Medicine (Baltimore) 2015; 94 (49) e2264
  • 10 Vincent JL, Sakr Y, Sprung CL. , et al; Sepsis Occurrence in Acutely Ill Patients Investigators. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med 2006; 34 (02) 344-353
  • 11 Yu Y, Li XX, Jiang LX. , et al. Procalcitonin levels in patients with positive blood culture, positive body fluid culture, sepsis, and severe sepsis: a cross-sectional study. Infect Dis (Lond) 2016; 48 (01) 63-69
  • 12 Mitsuma SF, Mansour MK, Dekker JP. , et al. Promising new assays and technologies for the diagnosis and management of infectious diseases. Clin Infect Dis 2013; 56 (07) 996-1002
  • 13 Ozsolak F, Milos PM. RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 2011; 12 (02) 87-98
  • 14 Ozsolak F, Milos PM. Single-molecule direct RNA sequencing without cDNA synthesis. Wiley Interdiscip Rev RNA 2011; 2 (04) 565-570
  • 15 Davenport EE, Burnham KL, Radhakrishnan J. , et al. Genomic landscape of the individual host response and outcomes in sepsis: a prospective cohort study. Lancet Respir Med 2016; 4 (04) 259-271
  • 16 Zurfluh S, Baumgartner T, Meier MA. , et al. The role of metabolomic markers for patients with infectious diseases: implications for risk stratification and therapeutic modulation. Expert Rev Anti Infect Ther 2018; 16 (02) 133-142
  • 17 Linscheid P, Seboek D, Schaer DJ, Zulewski H, Keller U, Müller B. Expression and secretion of procalcitonin and calcitonin gene-related peptide by adherent monocytes and by macrophage-activated adipocytes. Crit Care Med 2004; 32 (08) 1715-1721
  • 18 Cuquemelle E, Soulis F, Villers D. , et al; A/H1N1 REVA-SRLF Study Group. Can procalcitonin help identify associated bacterial infection in patients with severe influenza pneumonia? A multicentre study. Intensive Care Med 2011; 37 (05) 796-800
  • 19 Tang BM, Eslick GD, Craig JC, McLean AS. Accuracy of procalcitonin for sepsis diagnosis in critically ill patients: systematic review and meta-analysis. Lancet Infect Dis 2007; 7 (03) 210-217
  • 20 Wacker C, Prkno A, Brunkhorst FM, Schlattmann P. Procalcitonin as a diagnostic marker for sepsis: a systematic review and meta-analysis. Lancet Infect Dis 2013; 13 (05) 426-435
  • 21 Schuetz P, Beishuizen A, Broyles M. , et al. Procalcitonin (PCT)-guided antibiotic stewardship: an international experts consensus on optimized clinical use. Clin Chem Lab Med 2019; 57 (09) 1308-1318
  • 22 Raith EP, Udy AA, Bailey M. , et al; Australian and New Zealand Intensive Care Society (ANZICS) Centre for Outcomes and Resource Evaluation (CORE). Prognostic accuracy of the SOFA score, SIRS criteria, and qSOFA score for in-hospital mortality among adults with suspected infection admitted to the intensive care unit. JAMA 2017; 317 (03) 290-300
  • 23 Dellinger RP, Carlet JM, Masur H. , et al; Surviving Sepsis Campaign Management Guidelines Committee. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit Care Med 2004; 32 (03) 858-873
  • 24 Dellinger RP, Levy MM, Carlet JM. , et al; International Surviving Sepsis Campaign Guidelines Committee; American Association of Critical-Care Nurses; American College of Chest Physicians; American College of Emergency Physicians; Canadian Critical Care Society; European Society of Clinical Microbiology and Infectious Diseases; European Society of Intensive Care Medicine; European Respiratory Society; International Sepsis Forum; Japanese Association for Acute Medicine; Japanese Society of Intensive Care Medicine; Society of Critical Care Medicine; Society of Hospital Medicine; Surgical Infection Society; World Federation of Societies of Intensive and Critical Care Medicine. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 2008; 36 (01) 296-327
  • 25 Schuetz P, Wolbers M, Christ-Crain M. , et al; ProHOSP Study Group. Prohormones for prediction of adverse medical outcome in community-acquired pneumonia and lower respiratory tract infections. Crit Care 2010; 14 (03) R106
  • 26 Seymour CW, Kennedy JN, Wang S. , et al. Derivation, validation, and potential treatment implications of novel clinical phenotypes for sepsis. JAMA 2019; 321 (20) 2003-2017
  • 27 Pierrakos C, Vincent JL. Sepsis biomarkers: a review. Crit Care 2010; 14 (01) R15
  • 28 Nichol AD, Egi M, Pettila V. , et al. Relative hyperlactatemia and hospital mortality in critically ill patients: a retrospective multi-centre study. Crit Care 2010; 14 (01) R25
  • 29 Jansen TC, van Bommel J, Schoonderbeek FJ. , et al; LACTATE study group. Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled trial. Am J Respir Crit Care Med 2010; 182 (06) 752-761
  • 30 Lyu X, Xu Q, Cai G, Yan J, Yan M. Efficacies of fluid resuscitation as guided by lactate clearance rate and central venous oxygen saturation in patients with septic shock [in Chinese]. Zhonghua Yi Xue Za Zhi 2015; 95 (07) 496-500
  • 31 Vincent JL, Quintairos E Silva A, Couto Jr L, Taccone FS. The value of blood lactate kinetics in critically ill patients: a systematic review. Crit Care 2016; 20 (01) 257
  • 32 Theodorou VP, Papaioannou VE, Tripsianis GA. , et al. Procalcitonin and procalcitonin kinetics for diagnosis and prognosis of intravascular catheter-related bloodstream infections in selected critically ill patients: a prospective observational study. BMC Infect Dis 2012; 12: 247
  • 33 Coelho LM, Salluh JI, Soares M. , et al. Patterns of C-reactive protein RATIO response in severe community-acquired pneumonia: a cohort study. Crit Care 2012; 16 (02) R53
  • 34 Schroeder S, Hochreiter M, Koehler T. , et al. Procalcitonin (PCT)-guided algorithm reduces length of antibiotic treatment in surgical intensive care patients with severe sepsis: results of a prospective randomized study. Langenbecks Arch Surg 2009; 394 (02) 221-226
  • 35 Hochreiter M, Köhler T, Schweiger AM. , et al. Procalcitonin to guide duration of antibiotic therapy in intensive care patients: a randomized prospective controlled trial. Crit Care 2009; 13 (03) R83
  • 36 Nobre V, Harbarth S, Graf JD, Rohner P, Pugin J. Use of procalcitonin to shorten antibiotic treatment duration in septic patients: a randomized trial. Am J Respir Crit Care Med 2008; 177 (05) 498-505
  • 37 Bouadma L, Luyt CE, Tubach F. , et al; PRORATA trial group. Use of procalcitonin to reduce patients' exposure to antibiotics in intensive care units (PRORATA trial): a multicentre randomised controlled trial. Lancet 2010; 375 (9713): 463-474
  • 38 Schuetz P, Briel M, Christ-Crain M. , et al. Procalcitonin to guide initiation and duration of antibiotic treatment in acute respiratory infections: an individual patient data meta-analysis. Clin Infect Dis 2012; 55 (05) 651-662
  • 39 Jensen JU, Hein L, Lundgren B. , et al; Procalcitonin And Survival Study (PASS) Group. Procalcitonin-guided interventions against infections to increase early appropriate antibiotics and improve survival in the intensive care unit: a randomized trial. Crit Care Med 2011; 39 (09) 2048-2058
  • 40 Karlsson S, Heikkinen M, Pettilä V. , et al; Finnsepsis Study Group. Predictive value of procalcitonin decrease in patients with severe sepsis: a prospective observational study. Crit Care 2010; 14 (06) R205
  • 41 Schuetz P, Amin DN, Greenwald JL. Role of procalcitonin in managing adult patients with respiratory tract infections. Chest 2012; 141 (04) 1063-1073
  • 42 Schuetz P, Maurer P, Punjabi V, Desai A, Amin DN, Gluck E. Procalcitonin decrease over 72 hours in US critical care units predicts fatal outcome in sepsis patients. Crit Care 2013; 17 (03) R115
  • 43 Schuetz P, Birkhahn R, Sherwin R. , et al. Serial procalcitonin predicts mortality in severe sepsis patients: results from the multicenter procalcitonin MOnitoring SEpsis (MOSES) study. Crit Care Med 2017; 45 (05) 781-789
  • 44 Schuetz P, Hausfater P, Amin D. , et al; TRIAGE Study group. Biomarkers from distinct biological pathways improve early risk stratification in medical emergency patients: the multinational, prospective, observational TRIAGE study. Crit Care 2015; 19: 377
  • 45 Kumar A, Roberts D, Wood KE. , et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 2006; 34 (06) 1589-1596
  • 46 Kumar A, Ellis P, Arabi Y. , et al; Cooperative Antimicrobial Therapy of Septic Shock Database Research Group. Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest 2009; 136 (05) 1237-1248
  • 47 Ohl CA, Luther VP. Antimicrobial stewardship for inpatient facilities. J Hosp Med 2011; 6: S4-S15
  • 48 Lawrence KL, Kollef MH. Antimicrobial stewardship in the intensive care unit: advances and obstacles. Am J Respir Crit Care Med 2009; 179 (06) 434-438
  • 49 de Jong E, van Oers JA, Beishuizen A. , et al. Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: a randomised, controlled, open-label trial. Lancet Infect Dis 2016; 16 (07) 819-827
  • 50 Schuetz P, Wirz Y, Sager R. , et al. Effect of procalcitonin-guided antibiotic treatment on mortality in acute respiratory infections: a patient level meta-analysis. Lancet Infect Dis 2018; 18 (01) 95-107
  • 51 Schuetz P, Chiappa V, Briel M, Greenwald JL. Procalcitonin algorithms for antibiotic therapy decisions: a systematic review of randomized controlled trials and recommendations for clinical algorithms. Arch Intern Med 2011; 171 (15) 1322-1331
  • 52 Schuetz P, Briel M, Christ-Crain M. , et al. Procalcitonin to guide initiation and duration of antibiotic treatment in acute respiratory infections: an individual patient data meta-analysis. Clin Infect Dis 2012; 55 (05) 651-662
  • 53 Landman GW, Kleefstra N. Procalcitonin in intensive care units: the PRORATA trial. Lancet 2010; 375 (9726): 1606 , author reply 1606–1607
  • 54 Wirz Y, Meier MA, Bouadma L. , et al. Effect of procalcitonin-guided antibiotic treatment on clinical outcomes in intensive care unit patients with infection and sepsis patients: a patient-level meta-analysis of randomized trials. Crit Care 2018; 22 (01) 191
  • 55 Wirz Y, Branche A, Wolff M. , et al. Management of respiratory infections with use of procalcitonin: moving toward more personalized antibiotic treatment decisions. ACS Infect Dis 2017; 3 (12) 875-879
  • 56 Meier MA, Branche A, Neeser OL. , et al. Procalcitonin-guided antibiotic treatment in patients with positive blood cultures: A patient-level meta-analysis of randomized trials. Clin Infect Dis 2018; 69 (03) 388-396
  • 57 Schuetz P, Bolliger R, Merker M. , et al. Procalcitonin-guided antibiotic therapy algorithms for different types of acute respiratory infections based on previous trials. Expert Rev Anti Infect Ther 2018; 16 (07) 555-564
  • 58 Huang DT, Yealy DM, Filbin MR. , et al; ProACT Investigators. Procalcitonin-guided use of antibiotics for lower respiratory tract infection. N Engl J Med 2018; 379 (03) 236-249
  • 59 Broyles MR. Impact of procalcitonin-guided antibiotic management on antibiotic exposure and outcomes: real-world evidence. Open Forum Infect Dis 2017; 4 (04) ofx213
  • 60 Caironi P, Latini R, Struck J. , et al; ALBIOS Study Investigators. Circulating biologically active adrenomedullin (bio-ADM) predicts hemodynamic support requirement and mortality during sepsis. Chest 2017; 152 (02) 312-320
  • 61 Christ-Crain M, Morgenthaler NG, Struck J, Harbarth S, Bergmann A, Müller B. Mid-regional pro-adrenomedullin as a prognostic marker in sepsis: an observational study. Crit Care 2005; 9 (06) R816-R824
  • 62 Elke G, Bloos F, Wilson DC. , et al; SepNet Critical Care Trials Group. The use of mid-regional proadrenomedullin to identify disease severity and treatment response to sepsis - a secondary analysis of a large randomised controlled trial. Crit Care 2018; 22 (01) 79
  • 63 Mebazaa A, Geven C, Hollinger A. , et al; AdrenOSS-1 study investigators. Circulating adrenomedullin estimates survival and reversibility of organ failure in sepsis: the prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock-1 (AdrenOSS-1) study. Crit Care 2018; 22 (01) 354
  • 64 Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 1999; 340 (06) 448-454
  • 65 Póvoa P, Coelho L, Almeida E. , et al. C-reactive protein as a marker of infection in critically ill patients. Clin Microbiol Infect 2005; 11 (02) 101-108
  • 66 Lelubre C, Anselin S, Zouaoui Boudjeltia K, Biston P, Piagnerelli M. Interpretation of C-reactive protein concentrations in critically ill patients. BioMed Res Int 2013; 2013: 124021
  • 67 Hernández G, Ospina-Tascón GA, Damiani LP. , et al; The ANDROMEDA SHOCK Investigators and the Latin America Intensive Care Network (LIVEN). Effect of a resuscitation strategy targeting peripheral perfusion status vs serum lactate levels on 28-day mortality among patients with septic shock: the ANDROMEDA-SHOCK randomized clinical trial. JAMA 2019; 321 (07) 654-664
  • 68 Sheyin O, Davies O, Duan W, Perez X. The prognostic significance of troponin elevation in patients with sepsis: a meta-analysis. Heart Lung 2015; 44 (01) 75-81
  • 69 Vallabhajosyula S, Sakhuja A, Geske JB. , et al. Role of admission troponin-T and serial troponin-T testing in predicting outcomes in severe sepsis and septic shock. J Am Heart Assoc 2017; 6 (09) 6
  • 70 Khoury J, Arow M, Elias A. , et al. The prognostic value of brain natriuretic peptide (BNP) in non-cardiac patients with sepsis, ultra-long follow-up. J Crit Care 2017; 42: 117-122
  • 71 Papanikolaou J, Makris D, Mpaka M, Palli E, Zygoulis P, Zakynthinos E. New insights into the mechanisms involved in B-type natriuretic peptide elevation and its prognostic value in septic patients. Crit Care 2014; 18 (03) R94
  • 72 Wang F, Wu Y, Tang L. , et al. Brain natriuretic peptide for prediction of mortality in patients with sepsis: a systematic review and meta-analysis. Crit Care 2012; 16 (03) R74
  • 73 Poston JT, Koyner JL. Sepsis associated acute kidney injury. BMJ 2019; 364: k4891
  • 74 Zhang A, Cai Y, Wang PF. , et al. Diagnosis and prognosis of neutrophil gelatinase-associated lipocalin for acute kidney injury with sepsis: a systematic review and meta-analysis. Crit Care 2016; 20: 41
  • 75 de Geus HR, Betjes MG, Schaick Rv, Groeneveld JA. Plasma NGAL similarly predicts acute kidney injury in sepsis and nonsepsis. Biomarkers Med 2013; 7 (03) 415-421
  • 76 Md Ralib A, Mat Nor MB, Pickering JW. Plasma neutrophil gelatinase-associated lipocalin diagnosed acute kidney injury in patients with systemic inflammatory disease and sepsis. Nephrology (Carlton) 2017; 22 (05) 412-419
  • 77 Beunders R, Struck J, Wu AHB. , et al. Proenkephalin (PENK) as a novel biomarker for kidney function. J Appl Lab Med 2017; 2: 400-412
  • 78 Hollinger A, Wittebole X, François B. , et al. Proenkephalin A 119-159 (Penkid) is an early biomarker of septic acute kidney injury: the Kidney in Sepsis and Septic Shock (Kid-SSS) study. Kidney Int Rep 2018; 3 (06) 1424-1433
  • 79 Kim H, Hur M, Lee S. , et al; GREAT Network. Proenkephalin, neutrophil gelatinase-associated lipocalin, and estimated glomerular filtration rates in patients with sepsis. Ann Lab Med 2017; 37 (05) 388-397
  • 80 Marino R, Struck J, Hartmann O. , et al. Diagnostic and short-term prognostic utility of plasma pro-enkephalin (pro-ENK) for acute kidney injury in patients admitted with sepsis in the emergency department. J Nephrol 2015; 28 (06) 717-724
  • 81 Gando S, Shiraishi A, Yamakawa K. , et al; Japanese Association for Acute Medicine (JAAM) Focused Outcomes Research in Emergency Care in Acute Respiratory Distress Syndrome, Sepsis and Trauma (FORECAST) Study Group. Role of disseminated intravascular coagulation in severe sepsis. Thromb Res 2019; 178: 182-188
  • 82 Simmons J, Pittet JF. The coagulopathy of acute sepsis. Curr Opin Anaesthesiol 2015; 28 (02) 227-236
  • 83 Patel P, Walborn A, Rondina M, Fareed J, Hoppensteadt D. Markers of inflammation and infection in sepsis and disseminated intravascular coagulation. Clin Appl Thromb Hemost 2019; 25: 1-3 . Doi: 10.1177/1076029619843338
  • 84 Hassan EA, Abdel Rehim AS, Ahmed AO, Abdullahtif H, Attia A. Clinical value of presepsin in comparison to hsCRP as a monitoring and early prognostic marker for sepsis in critically ill patients. Medicina (Kaunas) 2019; 55 (02) 55
  • 85 Masson S, Caironi P, Spanuth E. , et al; ALBIOS Study Investigators. Presepsin (soluble CD14 subtype) and procalcitonin levels for mortality prediction in sepsis: data from the Albumin Italian Outcome Sepsis trial. Crit Care 2014; 18 (01) R6
  • 86 Brodska H, Valenta J, Pelinkova K. , et al. Diagnostic and prognostic value of presepsin vs. established biomarkers in critically ill patients with sepsis or systemic inflammatory response syndrome. Clin Chem Lab Med 2018; 56 (04) 658-668
  • 87 Wu CC, Lan HM, Han ST. , et al. Comparison of diagnostic accuracy in sepsis between presepsin, procalcitonin, and C-reactive protein: a systematic review and meta-analysis. Ann Intensive Care 2017; 7 (01) 91
  • 88 Li S, Huang X, Chen Z. , et al. Neutrophil CD64 expression as a biomarker in the early diagnosis of bacterial infection: a meta-analysis. Int J Infect Dis 2013; 17 (01) e12-e23
  • 89 Wang X, Li ZY, Zeng L. , et al. Neutrophil CD64 expression as a diagnostic marker for sepsis in adult patients: a meta-analysis. Crit Care 2015; 19: 245
  • 90 Muzlovic I, Ihan A, Stubljar D. CD64 index on neutrophils can diagnose sepsis and predict 30-day survival in subjects after ventilator-associated pneumonia. J Infect Dev Ctries 2016; 10 (03) 260-268
  • 91 Donadello K, Scolletta S, Covajes C, Vincent JL. suPAR as a prognostic biomarker in sepsis. BMC Med 2012; 10: 2
  • 92 Gussen H, Hohlstein P, Bartneck M. , et al. Neutrophils are a main source of circulating suPAR predicting outcome in critical illness. J Intensive Care 2019; 7: 26
  • 93 Koch A, Voigt S, Kruschinski C. , et al. Circulating soluble urokinase plasminogen activator receptor is stably elevated during the first week of treatment in the intensive care unit and predicts mortality in critically ill patients. Crit Care 2011; 15 (01) R63
  • 94 Wu Y, Wang F, Fan X. , et al. Accuracy of plasma sTREM-1 for sepsis diagnosis in systemic inflammatory patients: a systematic review and meta-analysis. Crit Care 2012; 16 (06) R229
  • 95 Jedynak M, Siemiatkowski A, Mroczko B, Groblewska M, Milewski R, Szmitkowski M. Soluble TREM-1 serum level can early predict mortality of patients with sepsis, severe sepsis and septic shock. Arch Immunol Ther Exp (Warsz) 2018; 66 (04) 299-306