CC BY-NC-ND 4.0 · Journal of Morphological Sciences 2019; 36(04): 223-230
DOI: 10.1055/s-0039-1693021
Original Article
Thieme Revinter Publicações Ltda Rio de Janeiro, Brazil

Gastrointestinal Tract and Accessory Organs in the Spotted Bent-toed Gecko, Cyrtodactylus peguensis (Boulenger, 1893): A Histological and Histochemical Study

Lamai Thongboon
1   Department of Biology, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
,
Sinlapachai Senarat
2   Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
,
Jes Kettratad
2   Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
,
Wannee Jiraungkoorskul
3   Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
,
Sansareeya Wangkulangkul
1   Department of Biology, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
,
Pisit Poolprasert
4   Program of Biology, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok, Thailand
,
Chamnan Para
5   Department of Western Languages and Linguistics, Faculty of Humanities and Social Sciences, Mahasarakham University, Thailand
,
Gen Kaneko
6   School of Arts and Sciences, University of Houston – Victoria, Texas, United States
,
Theerakamol Pengsaku
7   Faculty of Medical Technology, Prince of Songkla University, Songkhla, Thailand
› Author Affiliations
Further Information

Publication History

27 April 2019

01 May 2019

Publication Date:
08 August 2019 (online)

Abstract

The spotted bent-toed gecko Cyrtodactylus peguensis is one of the exploited reptiles in Thailand. In order to provide basic information for the digestive system of this species, we have examined histologically the gastrointestinal and accessory organs of C. peguensis using routine methods. The gastrointestinal region of this reptile started from the stomach and the intestine. The stomach was separated into fundic and pyloric regions. In both regions, the stomach wall was formed by four distinct tissue layers, including mucosa, submucosa, muscularis, and serosa layers. Mucous neck cells and oxynticopeptic cells were identified as glycoprotein-producing cells in the stomach by Periodic acid-Schiff (PAS) staining. The small and large intestines shared many histological characteristics, but the former contained more intestinal folds, while the latter had more PAS-positive goblet cells. Histological characteristics of accessory organs, liver and pancreas, were also provided. Overall, the gastrointestinal and accessory organs of C. peguensis were largely similar to those from other reptiles, but fine structural information will open up considerable opportunities to further studies related to the endocrinology, the physiology, and the conservation of this species.

 
  • References

  • 1 Uetz P. The Reptile Database. Available at: http://reptile-database.reptarium.cz . Accessed April 21, 1996
  • 2 Bauer AM. Two new species of Cyrtodactylus (Squamata: Gekkonidae) from Myanmar. Proc Calif Acad Sci 2002; 53: 73-86
  • 3 Bauer AM. Descriptions of seven new Cyrtodactylus (Squamata: Gekkonidae) with a key to the species of Myanmar (Burma). Proc Calif Acad Sci 2003; 54 (04) 463-498
  • 4 Darevsky IS, Szczerbak NN. A new gecko of the genus Gonydactylus (Sauria, Gekkonidae) with a key to the species from Vietnam. Asiat Herpetol Res 1997; 7: 19-22
  • 5 Ziegler T, Rösler H, Herrmann HW, Vu NT. Cyrtodactylus phongnhakebangensis sp. n., ein neuer Bogenfingergecko aus dem annamitischen Karstwaldmassiv, Vietnam. Herpetofauna (Weinstadt) 2002; 24 (141) 11-25
  • 6 Ulber T. Bemerkungen über cyrtodactyline Geckos aus Thailand nebst Beschreibung von zwei neuen Arten (Reptilia: Gekkonidae). Mitt Zool Mus Berl 1993; 69: 187-200
  • 7 Wood Jr PL, Heinicke MP, Jackman TR, Bauer AM. Phylogeny of bent-toed geckos (Cyrtodactylus) reveals a west to east pattern of diversification. Mol Phylogenet Evol 2012; 65 (03) 992-1003
  • 8 Chan-ard T, John WL, Jarujin N. A Field Guide to the Reptiles of Thailand. 2015
  • 9 UNEP-WCMC. 2013. Checklist of cites species. Available at: http://wedocs.unep.org/bitstream/handle/20.500.11822/8973/-Checklist%20of%20CITES%20Species%20-%20Lista%20de%20la%20Especies%20CITES%20-%20Liste%20des%20Especies%20CITES%20%28English-Spanish-French%29-2001478.pdf?sequence=3&isAllowed=y . Accessed September 10, 2017
  • 10 Rodrigues-Sartori SS, de Oliveira K, Nogueira PC. , et al. Morphology of the stomach of the tropical house gecko Hemidactylus mabouia (Squamata: Gekkonidae). Acta Zool 2011; 92: 179-186
  • 11 Rodrigues-Sartori SS, Nogueira KOP, Rocha AS. , et al. Functional morphology of the gut of the tropical house gecko Hemidactylus mabouia (Squamata: Gekkonidae). Anim Biol 2014; 64: 217-237
  • 12 Presnell JK, Schreibman V MP. , Eds. Humason's Animal Tissue Techniques. USA: Johns Hopkins University Press; 1997
  • 13 Suvarna KS, Layton C, Bancroft JD. 7th ed. Bancroft's Theory and Practice of Histological Techniques. Canada: Elsevier; 2013
  • 14 Zug GR. Herpetology: An Introductory Biology of Amphibians and Reptiles. San Diego: Academic Press; 1993: 572
  • 15 Smith D, Dobson H, Spence E. Gastrointestinal studies in the green iguana: technique and reference values. Vet Radiol Ultrasound 2001; 42 (06) 515-520
  • 16 Luppa H. Histology of the digestive tract. In: Gans C, Parsons TS. , eds. Biology of the Reptilia. London: Academic Press; 1977: 225-302
  • 17 Liquori GE, Ferri D, Scillitani G. Fine structure of the oxynticopeptic cells in the gastric glands of the ruin lizard, Podarcis sicula campestris De Betta, 1857. J Morphol 2000; 243 (02) 167-171
  • 18 Andrew W, Hickman CP. Histology of the Vertebrates. In: A Comparative Text. Saint Louis: The C. V. Mosby Company; 1974: 439
  • 19 George LL, Alves CER, Castro RRL. Histologia comparada. Editora Roca, São Paulo; 1998: 286
  • 20 Pereira JG. Estudos histológico e histoquímico do tubo digestivo e do pâncreas do Kinosternon scorpioides Linnaeus, 1766 (Reptilia, Chelonia, Kinosternidae), muçuã. Dissertação de Mestrado, Universidade Federal de Viçosa, Viçosa, MG; 2000: 148
  • 21 Carvalho ETC, Junqueira LCU. Histology of the kidney and urinary bladder of Siphonops annulatus (Amphibia-Gymnophiona). Arch Histol Cytol 1999; 62 (01) 39-45
  • 22 Derrien M, van Passel MW, van de Bovenkamp JH, Schipper RG, de Vos WM, Dekker J. Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes 2010; 1 (04) 254-268
  • 23 Scillitani G, Mentino D, Liquori GE, Ferri D. Histochemical characterization of the mucins of the alimentary tract of the grass snake, Natrix natrix (Colubridae). Tissue Cell 2012; 44 (05) 288-295
  • 24 Liquori GE, Scillitani G, Mastrodonato M, Ferri D. Histochemical investigations on the secretory cells in the oesophagogastric tract of the Eurasian green toad, Bufo viridis . Histochem J 2002; 34 (10) 517-524
  • 25 Jin SM, Maruch SMG, Rodrigues MAM, Pacheco P. Histologia geral dos intestinos de Caiman crocodilus yacare (Daudin, 1802) (Crocodilia: Reptilia). Rev Bras Zool 1990; 7 (1/2): 111-120
  • 26 Holmberg A, Kaim J, Persson A, Jensen J, Wang T, Holmgren S. Effects of digestive status on the reptilian gut. Comp Biochem Physiol A Mol Integr Physiol 2002; 133 (03) 499-518
  • 27 Barboza PS. Digesta passage and functional anatomy of the digestive tract in the desert tortoise (Xerobates agassizii). J Comp Physiol B 1995; 165 (03) 193-202
  • 28 Solas MT, Zapata A. Gut-associated lymphoid tissue (GALT) in reptiles: intraepithelial cells. Dev Comp Immunol 1980; 4 (01) 87-97
  • 29 Al-Thani AS, El-Sherif G. Histological and histochemical study of the digestive tract of the worm-like reptile, Diplometopon zarudnyi (Squamata). Quatar Univ Sci J 1996; 16 (01) 113-117
  • 30 Ferri S, Junqueira LC, Medeiros LF, Mederios LO. Gross, microscopic and ultrastructural study of the intestinal tube of Xenodon merremii Wagler, 1824 (Ophidia). J Anat 1976; 121 (Pt 2): 291-301
  • 31 Allen A, Flemström G. Gastroduodenal mucus bicarbonate barrier: protection against acid and pepsin. Am J Physiol Cell Physiol 2005; 288 (01) C1-C19
  • 32 Ganser LR, Hopkins WA, O'Neil L. , et al. Liver histopathology of the Southern Watersnake, Nerodia fasciata fasciata, following chronic exposure to trace element-contaminated prey from a coal ash disposal site. J Herpetol 2003; 37 (01) 219-226
  • 33 Hraoui-Bloquet S, Exbrayat JM. Developpement embryonnaire du tube digestif chez Typhlonectes compressicaudus (Dumeril et Bibron, 1841), Amphibien Gymnophione vivipare. Annales de Sciences Naturelles. Zoologie, Paris. 1992; 13: 11-23
  • 34 Spornitz UM. Studies on the liver of Xenopus laevis. I. The ultrastructure of the parenchymal cell. Anat Embryol (Berl) 1975; 146 (03) 245-264
  • 35 Spornitz UM. Studies on the liver of Xenopus laevis. III. The ultrastructure and the glycogen content of the developing liver. Anat Embryol (Berl) 1978; 154 (01) 1-25
  • 36 Delsol M, Flatin J, Exbrayat JM. Le tube digestif des Amphibiens adultes. In: Grasse PP, Delsol M. , eds, Traite de Zoologie, Tome XIV, Fasc.I A., Masson, Paris; 1995: 497-508
  • 37 Barni S, Bertone V, Croce AC, Bottiroli G, Bernini F, Gerzeli G. Increase in liver pigmentation during natural hibernation in some amphibians. J Anat 1999; 195 (Pt 1): 19-25
  • 38 Xie ZH, Zhong HB, Li HJ, Hou YJ. The structural organization of the liver in the Chinese fire-bellied newt (Cynops orientalis). Int J Morphol 2011; 29 (04) 1317-1320
  • 39 Meseguer J, Lopez-Ruiz A, Esteban MA. Melano-macrophages of the seawater teleosts, sea bass (Dicentrarchus labrax) and gilthead seabream (Sparus aurata): Morphology, formation and possible function. Cell Tissue Res 1994; 277 (01) 1-10
  • 40 Ribeiro HJ, Procópio MS, Gomes JMM. , et al. Functional dissimilarity of melanomacrophage centres in the liver and spleen from females of the teleost fish Prochilodus argenteus . Cell Tissue Res 2011; 346 (03) 417-425
  • 41 Christiansen JL, Grzybowski JM, Kodama RM. Melanomacrophage aggregations and their age relationships in the yellow mud turtle, Kinosternon flavescens (Kinosternidae). Pigment Cell Res 1996; 9 (04) 185-190
  • 42 Gallone A, Guida G, Maida I, Cicero R. Spleen and liver pigmented macrophages of Rana esculenta L. A new melanogenic system?. Pigment Cell Res 2002; 15 (01) 32-40
  • 43 Sichel G. Biosynthesis and function of melanins in hepatic pigmentary system. Pigment Cell Res 1988; 1 (04) 250-258
  • 44 Geremia E, Corsaro C, Bonomo R. , et al. Eumelanins as free radicals trap and superoxide dismutase activities in Amphibia. Comp Biochem Physiol B 1984; 79 (01) 67-69
  • 45 Sichel G, Corsaro C, Scalia M, Sciuto S, Geremia E. Relationship between melanin content and superoxide dismutase (SOD) activity in the liver of various species of animals. Cell Biochem Funct 1987; 5 (02) 123-128
  • 46 Scalia M, Geremia E, Corsaro C, Santoro C, Baratta D, Sichel G. Lipid peroxidation in pigmented and unpigmented liver tissues: protective role of melanin. Pigment Cell Res 1990; 3 (02) 115-119
  • 47 Fenoglio C, Boncompagni E, Fasola M. , et al. Effects of environmental pollution on the liver parenchymal cells and Kupffer-melanomacrophagic cells of the frog Rana esculenta. Ecotoxicol Environ Saf 2005; 60 (03) 259-268