CC BY-ND-NC 4.0 · SynOpen 2019; 03(04): 96-102
DOI: 10.1055/s-0039-1690332
paper
Copyright with the author(s) (2019) The author(s)

Synthesis of (–)-Bulgecinine and 5-epi-Bulgecinine through Proline-Catalysed Asymmetric α-Hydroxylation of an Aldehyde Derived from l-Glutamic Acid

Vipin Kumar Jain
,
Mrityunjay Kumar
V.K.J. thanks CSIR - Indian Institute of Chemical Biology for a Senior Research Fellowship
Further Information

Publication History

Received: 20 August 2019

Accepted after revision: 12 September 2019

Publication Date:
09 October 2019 (online)


Abstract

A very efficient synthetic route to (–)-bulgecinine and 5-epibulgecinine from an aldehyde derived from l-glutamic acid is reported. Proline-catalysed asymmetric α-hydroxylation reaction of an aldehyde is the key step in this synthesis, which is used to incorporate a hydroxyl group at the α-position to that aldehyde in good yield and with very high diastereoselectivity. Both (–)-bulgecinine and 5-epi-bulgecinine are synthesised from the same olefin via epoxidation followed by BF3·OEt2-catalyzed intramolecular cyclisation. This synthetic route can easily be extended for the synthesis of the enantiomer and other isomers of bulgecinine starting from an aldehyde derived from d-glutamic acid.

Supporting Information

 
  • References and notes

  • 1 Shinagawa S, Maki M, Kintaka K, Imada A, Asai M. J. Antibiot. 1985; 38: 17
  • 2 Imada A, Kintaka K, Nakao M, Shinagawa S. J. Antibiot. 1982; 35: 1400
  • 3 Kraft AR, Prabhu J, Ursinus A, Holtje JV. J. Bacteriol. 1999; 181: 7192
  • 4 Shinagawa S, Kashara F, Wada Y, Harada S, Asai M. Tetrahedron 1984; 40: 3465
  • 5 Van Asselt EJ, Kalk KH, Dijkstra BW. Biochemistry 2000; 39: 1924
  • 6 Thunnissen AM. W. H, Rozeboom HJ, Kalk KH, Dijkstra BW. Biochemistry 1995; 34: 12729
  • 7 Templin MF, Edwards DH, Hoeltje JY. J. Biol. Chem. 1992; 267: 20039; and references therein
  • 8 Das B, Kumar DN. Synlett 2011; 1285
  • 9 Show K, Upadhyay PK, Kumar P. Tetrahedron: Asymmetry 2011; 22: 1234
  • 10 Toumi M, Couty F, Evano G. Tetrahedron Lett. 2008; 49: 1175
  • 11 Krasinski A, Jurczak J. Tetrahedron Lett. 2001; 42: 2019
  • 12 Holt KA, Swift JP, Smith ME. B, Taylor SJ. C, McCague R. Tetrahedron Lett. 2002; 43: 1545
  • 13 Khalaf JK, Dutta A. J. Org. Chem. 2004; 69: 387
  • 14 Chavan SP, Praveen C, Sharma P, Kalkote UR. Tetrahedron Lett. 2005; 46: 439
  • 15 Trost BM, Horne DB, Woltering MJ. Chem. Eur. J. 2006; 12: 6607
  • 16 Chandrasekhar S, Chandrashekar G, Vijeendera K, Sarma GD. Tetrahedron: Asymmetry 2006; 17: 2864
  • 17 Wang J.-T, Lin T.-C, Chen Y.-H, Lin C.-H, Fang J.-M. MedChemComm 2013; 4: 783
  • 18 Natori Y, Kikuchi S, Kondo T, Saito Y, Yoshimura Y, Takahata H. Org. Biomol. Chem. 2014; 12: 1983
    • 19a Venkataramasubramanian V, Chaithanya Kiran IN, Sudalai A. Synlett 2015; 26: 355
    • 19b Kumar P, Dwivedi N. Acc. Chem. Res. 2013; 46: 289
    • 19c Zhong G. Angew. Chem. Int. Ed. 2003; 42: 4247
    • 19d Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
    • 19e Vilaivan T, Bhanthumnavin W. Molecules 2010; 15: 917
    • 19f Lalwani KG, Sudalai A. Synlett 2016; 27: 1339
    • 19g Hayashi Y, Yamaguchi J, Hibino K, Shoji M. Tetrahedron Lett. 2003; 44: 8293
    • 19h Mangion IK, MacMillan DW. C. J. Am. Chem. Soc. 2005; 127: 3696
    • 19i Momiyama N, Yamamoto H. J. Am. Chem. Soc. 2003; 125: 6038
    • 19j Lee LG, Whitesides GM. J. Org. Chem. 1986; 51: 25
    • 19k Chacko S, Ramapanicker R. J. Org. Chem. 2015; 80: 4776
    • 19l Brown SP, Brochu MP, Sinz CJ, MacMillan DW. C. J. Am. Chem. Soc. 2003; 125: 10808
  • 20 Janey JM. Angew. Chem. Int. Ed. 2005; 44: 4292
  • 21 Petakamsetty R, Jain VK, Majhi PK, Ramapanicker R. Org. Biomol. Chem. 2015; 13: 8512
  • 22 Jain VK, Ramapanicker R. Tetrahedron 2017; 73: 1568
  • 23 Petakamsetty R, Das RP, Ramapanicker R. Tetrahedron 2014; 70: 9554
  • 24 Truchot C, Wang Q, Sasaki NA. Eur. J. Org. Chem. 2005; 1765
  • 25 Xu Z, Zhang F, Zhang L, Jia Y. Org. Biomol. Chem. 2011; 9: 2512