CC BY-NC-ND 4.0 · Journal of Morphological Sciences 2019; 36(02): 115-121
DOI: 10.1055/s-0039-1688809
Original Article
Thieme Revinter Publicações Ltda Rio de Janeiro, Brazil

Effects of Supraphysiological Doses of Testosterone Cypionate and Stanozolol on Neuronal Density of Basolateral and Medial Amygdala and on the Anxious Behavior of Mice

Melissa Ribeiro
1   Department of Anatomy, Universidade Federal de Alfenas, Alfenas, MG, Brazil
,
Ariane Freitas
1   Department of Anatomy, Universidade Federal de Alfenas, Alfenas, MG, Brazil
,
Bruno Damião
1   Department of Anatomy, Universidade Federal de Alfenas, Alfenas, MG, Brazil
,
Wagner Costa Rossi Junior
2   Departament of Morphology, Universidade José do Rosário Vellano, Unifenas, Alfenas, MG, Brazil
,
Flávia da Ré Guerra
1   Department of Anatomy, Universidade Federal de Alfenas, Alfenas, MG, Brazil
,
Evelise Aline Soares
1   Department of Anatomy, Universidade Federal de Alfenas, Alfenas, MG, Brazil
,
Petrus Pires Marques
2   Departament of Morphology, Universidade José do Rosário Vellano, Unifenas, Alfenas, MG, Brazil
,
Alessandra Esteves
1   Department of Anatomy, Universidade Federal de Alfenas, Alfenas, MG, Brazil
› Author Affiliations
Further Information

Publication History

22 August 2018

28 March 2019

Publication Date:
14 June 2019 (online)

Abstract

Supraphysiological doses of anabolic-androgenic steroids (AAS) have been associated to possible nerve tissue damage and behavioral effects. Considering the lack of knowledge of the neural aspects involved in these behavioral alterations, this work aimed to analyze the anxious behavior response or aggressiveness, besides quantifying the neuronal density of the basolateral amygdala (BLA) and of the ventral posterior nucleus (VPN) of the medial amygdala. The animals received doses of testosterone cypionate (CT Group) and stanozolol (ST Group) twice a week for 33 days. The effects of chronic administration of AAS related to anxious behavior (as determined by the elevated plus maze [EPM] test) in male animals are observed in a lower number of entries (< 45.25%), and a shorter staying time spent in the open arms (< 41.9%) was observed in the ST. In female animals, a longer staying time spent in the closed arms of the EPM test was observed in the CT (> 15%) as well as a shorter staying time spent in the open arms for CT (< 17.1%) also to ST (< 52.1%). Regarding the neuronal density in BLA, a significant reduction in neuronal density of male animals (17.55%) was observed only in CT, whereas for females, significant differences were found in CT (19.16%) and ST (18.36%). The reduction of neuronal density in VPN in male animals was 13.55% in CT and 17.68% in ST, whereas in group of females it was 13.53% and 14.32%, respectively for CT and ST. Therefore, the two steroids used in this experiment were able to significantly reduce neuronal density in two analyzed areas, regardless of sex, suggesting that indiscriminate use of these substances causes death of brain amygdala neurons.

 
  • References

  • 1 Brower KJ. Anabolic steroids. Psychiatr Clin North Am 1993; 16 (01) 97-103
  • 2 Clark AS, Fast AS. Comparison of the effects of 17 alpha-methyltestosterone, methandrostenolone, and nandrolone decanoate on the sexual behavior of castrated male rats. Behav Neurosci 1996; 110 (06) 1478-1486
  • 3 Bahrke MS, Yesalis III CE, Wright JE. Psychological and behavioural effects of endogenous testosterone levels and anabolic-androgenic steroids among males. A review. Sports Med 1990; 10 (05) 303-337
  • 4 Pope Jr HG, Katz DL. Affective and psychotic symptoms associated with anabolic steroid use. Am J Psychiatry 1988; 145 (04) 487-490
  • 5 Schulte A, Ernst H, Peters L, Heinrich U. Induction of squamous cell carcinomas in the mouse lung after long-term inhalation of polycyclic aromatic hydrocarbon-rich exhausts. Exp Toxicol Pathol 1994; 45 (07) 415-421 . Doi: 10.1016/S0940-2993(11)80369-6
  • 6 Kalinine E, Zimmer ER, Zenki KC. , et al. Nandrolone-induced aggressive behavior is associated with alterations in extracellular glutamate homeostasis in mice. Horm Behav 2014; 66 (02) 383-392 . Doi: 10.1016/j.yhbeh.2014.06.005
  • 7 Estrada M, Varshney A, Ehrlich BE. Elevated testosterone induces apoptosis in neuronal cells. J Biol Chem 2006; 281 (35) 25492-25501 . Doi: 10.1074/jbc.M603193200
  • 8 Talih F, Fattal O, Malone Jr D. Anabolic steroid abuse: psychiatric and physical costs. Cleve Clin J Med 2007; 74 (05) 341-344 , 346, 349–352
  • 9 Tucci P, Morgese MG, Colaianna M. , et al. Neurochemical consequence of steroid abuse: stanozolol-induced monoaminergic changes. Steroids 2012; 77 (03) 269-275 . Doi: 10.1016/j.steroids.2011.12.014
  • 10 Henderson LP, Penatti CA, Jones BL, Yang P, Clark AS. Anabolic androgenic steroids and forebrain GABAergic transmission. Neuroscience 2006; 138 (03) 793-799 . Doi: 10.1016/j.neuroscience.2005.08.039
  • 11 Carobrez AP, Bertoglio LJ. Ethological and temporal analyses of anxiety-like behavior: the elevated plus-maze model 20 years on. Neurosci Biobehav Rev 2005; 29 (08) 1193-1205 . Doi: 10.1016/j.neubiorev.2005.04.017
  • 12 Lister RG. The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology (Berl) 1987; 92 (02) 180-185
  • 13 Ribeiro CM, Silva DK, Damião B. , et al. Análise quantitativa de células de Purkinje em camundongos sob o uso dos esteroides anabolizantes. Revista Neurociências 2014; 22 (03) 432-437 . Doi: 10.4181/RNC.2014.22.03.969.6p
  • 14 von Bartheld CS, Bahney J, Herculano-Houzel S. The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting. J Comp Neurol 2016; 524 (18) 3865-3895 https://doi.org/doi . Doi: 10.1002/cne.24040
  • 15 Franklin KBJ, Paxinos G. Paxinos and Franklin's The mouse brain in stereotaxic coordinates, 3rd edn. Academic Press, an imprint of Elsevier. New York:
  • 16 Kádár A, Sánchez E, Wittmann G. , et al. Distribution of hypophysiotropic thyrotropin-releasing hormone (TRH)-synthesizing neurons in the hypothalamic paraventricular nucleus of the mouse. J Comp Neurol 2010; 518 (19) 3948-3961 https://doi.org/doi . Doi: 10.1002/cne.22432
  • 17 Mandarim-de-Lacerda CA. Stereological tools in biomedical research. An Acad Bras Cienc 2003; 75 (04) 469-486
  • 18 Boyce RW, Dorph-Petersen KA, Lyck L, Gundersen HJ. Design-based stereology: introduction to basic concepts and practical approaches for estimation of cell number. Toxicol Pathol 2010; 38 (07) 1011-1025 https://doi.org/doi . Doi: 10.1177/0192623310385140
  • 19 Mühlfeld C, Papadakis T, Krasteva G, Nyengaard JR, Hahn U, Kummer W. An unbiased stereological method for efficiently quantifying the innervation of the heart and other organs based on total length estimations. J Appl Physiol (1985) 2010; 108 (05) 1402-1409 https://doi.org/doi:10.1152/japplphysiol.01013.2009
  • 20 Ambar G, Chiavegatto S. Anabolic-androgenic steroid treatment induces behavioral disinhibition and downregulation of serotonin receptor messenger RNA in the prefrontal cortex and amygdala of male mice. Genes Brain Behav 2009; 8 (02) 161-173 . Doi: 10.1111/j.1601-183X.2008.00458.x
  • 21 Rocha VM, Calil CM, Ferreira R, Moura MJ, Marcondes FK. Influence of anabolic steroid on anxiety levels in sedentary male rats. Stress 2007; 10 (04) 326-331 . Doi: 10.1080/10253890701281344
  • 22 Bitran D, Kellogg CK, Hilvers RJ. Treatment with an anabolic-androgenic steroid affects anxiety-related behavior and alters the sensitivity of cortical GABAA receptors in the rat. Horm Behav 1993; 27 (04) 568-583 . Doi: 10.1006/hbeh.1993.1041
  • 23 Rainnie DG. Serotonergic modulation of neurotransmission in the rat basolateral amygdala. J Neurophysiol 1999; 82 (01) 69-85
  • 24 Friedel A, Geyer H, Kamber M. , et al. 17beta-hydroxy-5alpha-androst-1-en-3-one (1-testosterone) is a potent androgen with anabolic properties. Toxicol Lett 2006; 165 (02) 149-155 . Doi: 10.1016/j.toxlet.2006.03.001
  • 25 Oliveira M, Bessa JM, Mesquita A. , et al. Induction of a hyperanxious state by antenatal dexamethasone: a case for less detrimental natural corticosteroids. Biol Psychiatry 2006; 59 (09) 844-852 . Doi: 10.1016/j.biopsych.2005.08.020
  • 26 Hallberg M, Johansson P, Kindlundh AM, Nyberg F. Anabolic-androgenic steroids affect the content of substance P and substance P(1-7) in the rat brain. Peptides 2000; 21 (06) 845-852
  • 27 McIntyre KL, Porter DM, Henderson LP. Anabolic androgenic steroids induce age-, sex-, and dose-dependent changes in GABA(A) receptor subunit mRNAs in the mouse forebrain. Neuropharmacology 2002; 43 (04) 634-645
  • 28 Damião B, Souza GG, Nogueira DA. , et al. Quantificação de Corpos de Neurônios em Camundongos Submetidos ao Uso de Esteroides Anabolizantes. Revista de Neurociências 2012; 20 (01) 68-72
  • 29 Freitas AC, Damiao B, Alves DM. , et al. Efeitos dos anabolizantes sobre a densidade de neurônios dos núcleos da base. Rev Bras Med Esporte 2017; 23 (03) 213-216 . Doi: 10.1590/1517-869220172303151688
  • 30 Orlando R, Caruso A, Molinaro G. , et al. Nanomolar concentrations of anabolic-androgenic steroids amplify excitotoxic neuronal death in mixed mouse cortical cultures. Brain Res 2007; 1165: 21-29 . Doi: 10.1016/j.brainres.2007.06.047
  • 31 Okamoto M, Hojo Y, Inoue K. , et al. Mild exercise increases dihydrotestosterone in hippocampus providing evidence for androgenic mediation of neurogenesis. Proc Natl Acad Sci U S A 2012; 109 (32) 13100-13105 . Doi: 10.1073/pnas.1210023109
  • 32 Yang P, Lones BL, Henderson LP. Mechanisms of anabolic androgenic steroid modulation of GABAA receptors. Neuropharmacology 2002; 43 (04) 619-633 . Doi: 10.1016/S0028-3908(02)00155-7
  • 33 Cardounel A, Regelson W, Kalimi M. Dehydroepiandrosterone protects hippocampal neurons against neurotoxin-induced cell death: mechanism of action. Proc Soc Exp Biol Med 1999; 222 (02) 145-149
  • 34 Frye CA, Reed TA. Androgenic neurosteroids: anti-seizure effects in an animal model of epilepsy. Psychoneuroendocrinology 1998; 23 (04) 385-399
  • 35 Ramsden M, Shin TM, Pike CJ. Androgens modulate neuronal vulnerability to kainate lesion. Neuroscience 2003; 122 (03) 573-578
  • 36 Azcoitia I, Sierra A, Veiga S, Honda S, Harada N, Garcia-Segura LM. Brain aromatase is neuroprotective. J Neurobiol 2001; 47 (04) 318-329
  • 37 [REMOVED HYPERLINK FIELD] Choi DW. Glutamate neurotoxicity and diseases of the nervous system. Neuron 1988; 1 (08) 623-634
  • 38 Rothman SM, Olney JW. Excitotoxicity and the NMDA receptor--still lethal after eight years. Trends Neurosci 1995; 18 (02) 57-58
  • 39 Kubo M, Ito E. Structural dynamics of an ionotropic glutamate receptor. Proteins 2004; 56 (03) 411-419 . Doi: 10.1002/prot.20154
  • 40 Orrenius S, Ankarcrona M, Nicotera P. Mechanisms of calcium-related cell death. Adv Neurol 1996; 71: 137-149 , discussion 149–151
  • 41 Sattler R, Tymianski M. Molecular mechanisms of calcium-dependent excitotoxicity. J Mol Med (Berl) 2000; 78 (01) 3-13 . Doi: 10.1007/s001090000077
  • 42 Diano S, Naftolin F, Horvath TL. Gonadal steroids target AMPA glutamate receptor-containing neurons in the rat hypothalamus, septum and amygdala: a morphological and biochemical study. Endocrinology 1997; 138 (02) 778-789 . Doi: 10.1210/endo.138.2.4937