Facial Plast Surg 2019; 35(01): 003-008
DOI: 10.1055/s-0039-1677720
Original Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Digital Analysis of Nasal Airflow Facilitating Decision Support in Rhinosurgery

Thomas Hildebrandt
1   Private Practice of Otorhinolaryngology, Zurich, Switzerland
,
Jan Joris Brüning
2   Biofluid Mechanics Lab, Charité – Universitätsmedizin Berlin, Berlin, Germany
,
Hans Lamecker
3   Development Office, 1000shapes GmbH, Berlin, Germany
,
Stefan Zachow
4   Mathematics for Life and Materials Sciences, Zuse Institute Berlin, Berlin, Germany
,
Werner J. Heppt
5   Department of Otorhinolaryngology, Head and Neck Surgery, Staedtisches Klinikum Karlsruhe, Karlsruhe, Germany
,
Nora Schmidt
6   Department of Otorhinolaryngology, Park-Klinik Weissensee, Berlin, Germany
,
Leonid Goubergrits
2   Biofluid Mechanics Lab, Charité – Universitätsmedizin Berlin, Berlin, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
13 February 2019 (online)

Abstract

Successful functional surgery on the nasal framework requires reliable and comprehensive diagnosis. In this regard, the authors introduce a new methodology: Digital Analysis of Nasal Airflow (diANA). It is based on computational fluid dynamics, a statistical shape model of the healthy nasal cavity and rhinologic expertise. diANA necessitates an anonymized tomographic dataset of the paranasal sinuses including the complete nasal cavity and, when available, clinical information. The principle of diANA is to compare the morphology and the respective airflow of an individual nose with those of a reference. This enables morphometric aberrations and consecutive flow field anomalies to localize and quantify within a patient’s nasal cavity. Finally, an elaborated expert opinion with instructive visualizations is provided. Using diANA might support surgeons in decision-making, avoiding unnecessary surgery, gaining more precision, and target-orientation for indicated operations.

 
  • References

  • 1 Stewart M, Ferguson B, Fromer L. Epidemiology and burden of nasal congestion. Int J Gen Med 2010; 3: 37-45
  • 2 Jessen M, Janzon L. Prevalence of non-allergic nasal complaints in an urban and a rural population in Sweden. Allergy 1989; 44 (08) 582-587
  • 3 Hildebrandt T, Heppt WJ, Kertzscher U, Goubergrits L. The concept of rhinorespiratory homeostasis--a new approach to nasal breathing. Facial Plast Surg 2013; 29 (02) 85-92
  • 4 Vogt K, Jalowayski AA, Althaus W. , et al. 4-Phase-Rhinomanometry (4PR)--basics and practice 2010. Rhinol Suppl 2010; 21 (21) 1-50
  • 5 Mlynski G, Beule A. Diagnostic methods of nasal respiratory function [in German]. HNO 2008; 56 (01) 81-99
  • 6 Mlynski G. Gestörte Funktion der oberen Atemwege wiederherstellende Verfahren bei gestörter Funktion der oberen Atemwege. Nasale Atmung. Laryngorhinootologie 2005; 84: 101-124
  • 7 Digital Analysis of Nasal Breathing (diANA). Available at: https://www.diana.doctor . Accessed November 5, 2018
  • 8 Hildebrandt T, Osman J, Goubergrits L. Numerical flow simulation: a new method for assessing nasal breathing [in German]. HNO 2016; 64 (08) 611-618
  • 9 Osman J, Großmann F, Brosien K, Kertscher U, Goubergrits L, Hildebrandt T. Assessment of nasal resistance using computational fluid dynamics. Curr Direct Biomed Eng 2016; 2 (01) 617-621
  • 10 Quadrio M, Pipolo C, Corti S. , et al. Review of computational fluid dynamics in the assessment of nasal air flow and analysis of its limitations. Eur Arch Otorhinolaryngol 2014; 271 (09) 2349-2354
  • 11 Goubergrits L, Schaller J, Kertzscher U. , et al. Statistical wall shear stress maps of ruptured and unruptured middle cerebral artery aneurysms. J R Soc Interface 2012; 9 (69) 677-688
  • 12 Goubergrits L, Mevert R, Yevtushenko P. , et al. The impact of MRI-based inflow for the hemodynamic evaluation of aortic coarctation. Ann Biomed Eng 2013; 41 (12) 2575-2587
  • 13 Brüning JJ, Goubergrits L, Heppt W, Zachow S, Hildebrandt T. Numerical analysis of nasal breathing: a pilot study. Facial Plast Surg 2017; 33 (04) 388-395
  • 14 Doorly DJ, Taylor DJ, Schroter RC. Mechanics of airflow in the human nasal airways. Respir Physiol Neurobiol 2008; 163 (1-3): 100-110
  • 15 Doorly DJ, Taylor DJ, Gambaruto AM, Schröter RC, Tolley N. Nasal architecture: form and flow. Philos Transact A Math Phys. Eng Sci 2008; 366: 3225-3246
  • 16 Elad D, Naftali S, Rosenfeld M, Wolf M. Physical stresses at the air-wall interface of the human nasal cavity during breathing. J Appl Physiol (1985) 2006; 100 (03) 1003-1010
  • 17 Hildebrandt T, Goubergrits L, Heppt WJ, Bessler S, Zachow S. Evaluation of the intranasal flow field through computational fluid dynamics. Facial Plast Surg 2013; 29 (02) 93-98
  • 18 Inthavong K, Shang Y, Tu J. Surface mapping for visualization of wall stresses during inhalation in a human nasal cavity. Respir Physiol Neurobiol 2014; 190: 54-61
  • 19 Taylor DJ, Doorly DJ, Schroter RC. Inflow boundary profile prescription for numerical simulation of nasal airflow. J R Soc Interface 2010; 7 (44) 515-527
  • 20 Zachow S, Muigg P, Hildebrandt T, Doleisch H, Hege HC. Visual exploration of nasal airflow. IEEE Trans Vis Comput Graph 2009; 15 (06) 1407-1414
  • 21 Zhao K, Jiang J. What is normal nasal airflow? A computational study of 22 healthy adults. Int Forum Allergy Rhinol 2014; 4 (06) 435-446
  • 22 Zhao K, Jiang J, Blacker K. , et al. Regional peak mucosal cooling predicts the perception of nasal patency. Laryngoscope 2014; 124 (03) 589-595
  • 23 Bruening J, Hildebrandt T, Bindernagel M. , et al. A Statistical Shape Model of the Human Nasal Cavity. Paper presented at: 8th World Congress of Biomechanics; July, 2018; Dublin, Ireland
  • 24 Lamecker H. Variational and statistical shape modeling for 3D geometry reconstruction [PhD Thesis, in German]. Berlin, Germany: Freie Universität; 2009
  • 25 Lamecker H, Zachow S. Statistical shape modeling of musculoskeletal structures and its applications. In: Zheng G, Li S. , eds. Computational Radiology for Orthopedic Interventions. Lecture Notes in Computational Vision and Biomechanics. Cham: Springer; 2016. : Vol. 23
  • 26 Baumann C. Gene expression of endothelial cells under shear stress [Doctoral Thesis, in German]. Berlin, Germany: Freie Universität Berlin; 2002
  • 27 Bongrazio M. Shear stress-dependent expression of proteins of the thrombospondin type 1 repeat (TSR) family in endothelial cells [Doctoral Thesis, in German]. Berlin, Germany: Freie Universität Berlin; 2004
  • 28 Even-Tzur N, Kloog Y, Wolf M, Elad D. Mucus secretion and cytoskeletal modifications in cultured nasal epithelial cells exposed to wall shear stresses. Biophys J 2008; 95 (06) 2998-3008
  • 29 Schmidt VJ. Die Koordination des Gefäßverhaltens in der Mikrozirkulation wird durch Connexine mit spezifischen Eigenschaften vermittelt [Doctoral Thesis, in German]. Lübeck, Germany: Universität zu Lübeck; 2008
  • 30 Davies PF. Flow-mediated endothelial mechanotransduction. Physiol Rev 1995; 75 (03) 519-560
  • 31 Hildebrandt T. Principles of modern septoplasty. In: Behrbohm H, Tardy EM. , eds. Essentials of Septorhinoplasty. 2nd ed. New York, USA: Thieme; 2016: 122-127
  • 32 Wexler DB, Davidson TM. The nasal valve: a review of the anatomy, imaging, and physiology. Am J Rhinol 2004; 18 (03) 143-150
  • 33 Huizing EH, De Groot JAM. Functional Reconstructive Nasal Surgery. 1st ed. Stuttgart, Germany: Thieme; 2003
  • 34 Proctor DF. The upper airway. In: Proctor DF, Anderson IB. , eds. The Nose. Upper Airway Physiology and the Atmospheric Environment. New York, NY: Elsevier, Urban & Fischer; 1982: 23-43
  • 35 Hildebrandt T. Das Konzept der Rhinorespiratorischen Homöostase—ein neuer theoretischer Ansatz für die Diskussion physiologischer und physikalischer Zusammenhänge bei der Nasenatmung [Doctoral Thesis, in German]. Freiburg im Breisgau, Germany: Albert-Ludwigs-Universität; 2011
  • 36 Bridger GP, Proctor DF. Maximum nasal inspiratory flow and nasal resistance. Ann Otol Rhinol Laryngol 1970; 79 (03) 481-488
  • 37 Gubisch W. Twenty-five years experience with extracorporeal septoplasty. Facial Plast Surg 2006; 22 (04) 230-239
  • 38 Heppt W, Gubisch W. Septal surgery in rhinoplasty. Facial Plast Surg 2011; 27 (02) 167-178