Nervenheilkunde 2018; 37(11): 786-791
DOI: 10.1055/s-0038-1675696
Universitätsklinikum Ulm
Georg Thieme Verlag KG Stuttgart · New York

Belohnung und das Opioidsystem

Reward and the opioidsystem
V. Rau
1   Universitätsklinikum Ulm, Klinik für Psychiatrie und Psychotherapie III, Ulm
,
K. Malejko
1   Universitätsklinikum Ulm, Klinik für Psychiatrie und Psychotherapie III, Ulm
,
H. Graf
1   Universitätsklinikum Ulm, Klinik für Psychiatrie und Psychotherapie III, Ulm
› Author Affiliations
Further Information

Publication History

eingegangen am: 02 September 2018

angenommen am: 18 September 2018

Publication Date:
30 October 2018 (online)

Zusammenfassung

Die Aussicht auf Belohnung ist eine fundamentale Motivation menschlichen Verhaltens und beeinflusst eine Vielzahl neurokognitiver Funktionen wie zielgerichtetes Verhalten und Lernen. Motivationales Verhalten wird im mesolimbischem Belohnungssystem maßgeblich durch den Neurotransmitter Dopamin moduliert. Eine Vielzahl tierexperimenteller und humaner Untersuchungen belegen jedoch eine Interaktion zwischen dem dopaminergen Belohnungssystem und Opioidsystem. Hinsichtlich der opioidergen Modulation des dopaminergen Belohnungssystems sind neben μ-Opioidrezeptoren und dopaminergen Neurone, auch GABAerge und glutamaterge Mechanismen relevant. In diesem Artikel sollen grundlegende Mechanismen der Interaktion zwischen dem Opioid- und dopaminergen Belohnungssystem vorgestellt werden. Das Verständnis dieser Interaktionen ist nicht nur in grundlagenwissenschaftlicher, sondern auch in klinischer Hinsicht relevant und soll am Beispiel des Opioidrezeptorantagonisten Naltrexon als medikamentöse Rückfallprophylaxe beim Alkoholabhängigkeitssyndrom und anhand der Verhaltenseffekte auf die Verarbeitung primärer Verstärker wie Nahrung dargestellt werden.

Summary

The prospect of reward is a fundamental motivation of human behaviour and modulates various neurocognitive functions such as goal-directed behaviour and learning. The underlying neural correlates of motivational behaviour have been consistently demonstrated within the mesolimbic dopaminergic reward system. However, animal and human studies revealed a considerable interaction between the dopaminergic reward and the opioid system. Here, μ-opioid-receptor activation, dopamine, but also GABAergic and glutamatergic mechanisms contribute to the interplay between these two neural systems. In this article, we provide an overview on basic mechanisms regarding the interaction between the opioid and the dopaminergic reward system. To elucidate the detailed mechanism of this interaction is not only relevant for the neuroscientific research, it has also clinical implications and should be demonstrated by the opioid-antagonist naltrexone and its use as anticraving medication in alcohol dependency, but also by its behavioural effects on the processing of primary rewards such as food.

 
  • Literatur

  • 1 Schultz W. Multiple reward signals in the brain. Nat Rev 2000; 01: 199-207.
  • 2 Sescousse G, Cald X, Segura B, Dreher JC. Processing of primary and secondary rewards: A quantitative meta-analysis and review of human functional neuroimaging studies. Neurosci Biobehav Rev 2013; 37: 681-696.
  • 3 Schultz W. Getting formal with dopamine and reward. Neuron 2002; 36: 241-263.
  • 4 Schultz W. Behavioral Theories and the Neurophysiology of Reward. Annu Rev Psychol 2006; 57: 87-115.
  • 5 Knutson B, Cooper JC. Functional magnetic resonance imaging of reward prediction. Curr Opin Neurol 2005; 18: 411-417.
  • 6 Alcaro A, Huber R, Panksepp J. Behavioral functions of the mesolimbic dopaminergic system: An affective neuroethological perspective. Brain Res Rev 2007; 56: 283-321.
  • 7 Dahlström A, Fuxe K. Localization of monoamines in the lower brain stem. Experientia 1964; 20: 398-399.
  • 8 Knutson B, Bossaerts P. Neural Antecedents of Financial Decisions. J Neurosci 2007; 27: 8174-8177.
  • 9 Berridge KC. Pleasures of the brain. Brain Cogn 2003; 52: 106-128.
  • 10 Hikosaka O, Bromberg-Martin E, Hong S, Matsumoto M. New insights on the subcortical representation of reward. Curr Opin Neurobiol 2008; 18: 203-208.
  • 11 Schultz W. Behavioral dopamine signals. Trends Neurosci 2007; 30: 203-210.
  • 12 Abler B, Seeringer A, Hartmann A, Grön G, Metzger C, Walter M, Stingl J. Neural Correlates of Antidepressant-Related Sexual Dysfunction: A Placebo-Controlled fMRI Study on Healthy Males Under Subchronic Paroxetine and Bupropion. Neuropsychopharmacology 2011; 36: 1837-1847.
  • 13 Abler B, Gron G, Hartmann A, Metzger C, Walter M. Modulation of Frontostriatal Interaction Aligns with Reduced Primary Reward Processing under Serotonergic Drugs. J Neurosci 2012; 32: 1329-1335.
  • 14 Graf H, Wiegers M, Metzger CD, Walter M, Grön G, Abler B. Erotic stimulus processing under amisulpride and reboxetine: a placebo-controlled fMRI study in healthy subjects. Int J Neuropsychopharmacol. 2015 18..
  • 15 Graf H, Metzger CD, Walter M, Abler B. Serotonergic antidepressants decrease hedonic signals but leave learning signals in the nucleus accumbens unaffected. Neuroreport. 2016 27..
  • 16 Graf H, Wiegers M, Metzger CD, Walter M, Grön G, Abler B. Noradrenergic modulation of neural erotic stimulus perception. Eur Neuropsychopharmacol. 2017 27..
  • 17 Graf H, Wiegers M, Metzger CD, Walter M, Abler B. Differential Noradrenergic Modulation of Monetary Reward and Visual Erotic Stimulus Processing. Front Psychiatry 2018; 09: 346.
  • 18 Le Merrer J, Becker JAJ, Befort K, Kieffer BL. Reward Processing by the Opioid System in the Brain. Physiol Rev 2009; 89: 1379-1412.
  • 19 Shippenberg GI. et al. The neurobiology of opiate reinforcement. Crit Rev Neurobiol 1998; 12: 267-303.
  • 20 van Ree JM, Gerrits M, Vanderschuren LJ. Opioids, reward and addiction: An encounter of biology, psychology, and medicine. Pharmacol Rev 1999; 51: 341-396.
  • 21 Van Ree JM, Niesink RJM, Van Wolfswinkel L, Ramsey NF, Kornet MLMW, Van Furth WR, Vanderschuren LJMJ, Gerrits MAFM, Van den Berg CL. Endogenous opioids and reward. Eur J Pharmacol 2000; 405: 89-101.
  • 22 Olmstead MC, Franklin KBJ. The development of a conditioned place preference to morphine: Effects of microinjections into various CNS sites. Behav Neurosci 1997; 111: 1324-1334.
  • 23 David V, Cazala P. Anatomical and pharmacological specificity of the rewarding effect elicited by microinjections of morphine into the nucleus accumbens of mice. Psychopharmacology (Berl) 2000; 150: 24-34.
  • 24 Bozarth MA, Wise RA. Anatomically distinct opiate receptor fields mediate reward and physical dependence. Science 1984; 224: 516-517.
  • 25 Castro DC, Berridge KC. Opioid Hedonic Hotspot in Nucleus Accumbens Shell: Mu, Delta, and Kappa Maps for Enhancement of Sweetness “Liking” and “Wanting”. J Neurosci 2014; 34: 4239-4250.
  • 26 Baldo BA, Kelley AE. Discrete neurochemical coding of distinguishable motivational processes: Insights from nucleus accumbens control of feeding. Psychopharmacology (Berl) 2007; 191: 439-459.
  • 27 Bodnar RJ, Lamonte N, Israel Y, Kandov Y, Ackerman TF, Khaimova E. Reciprocal opioid-opioid interactions between the ventral tegmental area and nucleus accumbens regions in mediating µ agonist-induced feeding in rats. Peptides 2005; 26: 621-629.
  • 28 Kelley AE, Bakshi VP, Haber SN, Steininger TL, Will MJ, Zhang M. Opioid modulation of taste hedonics within the ventral striatum. Physiol Behav 2002; 76: 365-377.
  • 29 Peciña S, Berridge KC. Opioid site in nucleus accumbens shell mediates eating and hedonic “liking” for food: Map based on microinjection Fos plumes. Brain Res 2000; 863: 71-86.
  • 30 Pecina S. Hedonic Hot Spot in Nucleus Accumbens Shell: Where Do Opioids Cause Increased Hedonic Impact of Sweetness?. J Neurosci 2005; 25: 11777-11786.
  • 31 Leyton M, Stewart J. The stimulation of central kappa opioid receptors decreases male sexual behavior and locomotor activity. Brain Res 1992; 594: 56-74.
  • 32 Balcita-Pedicino JJ, Omelchenko N, Bell R, Sesack SR. The inhibitory influence of the lateral habenula on midbrain dopamine cells: Ultrastructural evidence for indirect mediation via the rostromedial mesopontine tegmental nucleus. J Comp Neurol 2011; 519: 1143-1164.
  • 33 Kelle AE, Stinus L, Iversen SD. Interactions between d-Ala-Met-enkephalin, A10 dopaminergic neurones, and spontaneous behaviour in the rat. Behav Brain Res. 1980
  • 34 Johnson SW, North RA. Two types of neurone in the rat ventral tegmental area and their synaptic inputs. J Physiol 1992; 450: 455-68.
  • 35 Matsui A, Jarvie BC, Robinson BG, Hentges ST, Williams JT. Separate GABA afferents to dopamine neurons mediate acute action of opioids, development of tolerance, and expression of withdrawal. Neuron 2014; 82 (06) 1346-56.
  • 36 Fields HL, Margolis EB. Understanding opioid reward. Trends Neurosci 2015; 38 (04) 217-25.
  • 37 Spanagel R, Herz A, Shippenberg TS. Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathway. Proc Natl Acad Sci USA 1992; 89: 2046-2050.
  • 38 Chefer VI, Kieffer BL, Shippenberg TS. Basal and morphine-evoked dopaminergic neurotransmission in the nucleus accumbens of MOR- and DOR- knockout mice. Eur J Neurosci 2003; 18: 1915-1922.
  • 39 Kiyatkin EA, Rebec GV. Impulse activity of ventral tegmental area neurons during heroin self-administration in rats. Neuroscience 2001; 102 (03) 565-80.
  • 40 Ting-A-Kee R, van der Kooy D. The neurobiology of opiate motivation. Cold Spring Harb Perspect Med 2012; 02 (10) a012096.
  • 41 Bechara A, Harrington F, Nader K, van der Kooy D. Neurobiology of Motivation: Double Dissociation of Two Motivational Mechanisms Mediating Opiate Reward in Drug-Naive Versus Drug-Dependent Animals. Behav Neurosci 1992; 106 (05) 798-807.
  • 42 Sirohi S, Bakalkin G, Walker BM. Alcohol-induced plasticity in the dynorphin/kappa-opioid receptor system. Front Mol Neurosci 2012; 05: 95.
  • 43 Walker BM, Valdez GR, McLaughlin JP, Bakalkin G. Targeting dynorphin/kappa opioid receptor systems to treat alcohol abuse and dependence. Alcohol 2012; 46 (04) 359-70.
  • 44 Clapp P, Bhave SV, Hoffman PL. How adaptation of the brain to alcohol leads to dependence: a pharmacological perspective. Alcohol Res Health 2008; 31 (04) 310-39.
  • 45 Ciccocioppo R, Martin-Fardon R, Weiss F. Effect of selective blockade of µ1or δ opioid receptors on reinstatement of alcohol-seeking behavior by Drug-associated stimuli in rats. Neuropsychopharmacology 2002; 27 (03) 391-9.
  • 46 Reus VI, Fochtmann LJ, Bukstein O, Eyler AE, Hilty DM, Horvitz-Lennon M, Mahoney J, Pasic J, Weaver M, Wills CD, McIntyre J, Kidd J, Yager J, Hong S-H. The American Psychiatric Association Practice Guideline for the Pharmacological Treatment of Patients With Alcohol Use Disorder. Am J Psychiatry 2018; 175: 86-90.
  • 47 Volpicelli JR, Alterman AI, Hayashida M, O’Brien CP. Naltrexone in the treatment of alcohol dependence. Arch Gen Psychiatry 1992; 49 (11) 876-80.
  • 48 O’Malley SS, Jaffe AJ, Chang G, Rode S, Schottenfeld R, Meyer RE, Rounsaville B. Six-month follow-up of naltrexone and psychotherapy for alcohol dependence. Arch Gen Psychiatry 1996; 53 (03) 217-24.
  • 49 Shen WW. Anticraving therapy for alcohol use disorder: A clinical review. Neuropsychopharmacol reports 2018; 38: 105-116.
  • 50 Rösner S, Hackl-Herrwerth A, Leucht S, Vecchi S, Srisurapanont M, Soyka M. Opioid antagonists for alcohol dependence. Cochrane Database Syst Rev 2010; CD001867.
  • 51 Doty P, de Wit H. Effects of naltrexone pretreatment on the subjective and performance effects of ethanol in social drinkers. Behav Pharmacol 1995; 06: 386-394.
  • 52 Doty P, Kirk JM, Cramblett MJ, de Wit H. Behavioral responses to ethanol in light and moderate social drinkers following naltrexone pretreatment. Drug Alcohol Depend 1997; 47: 109-116.
  • 53 Drobes DJ, Anton RF, Thomas SE, Voronin K. Effects of naltrexone and nalmefene on subjective response to alcohol among non-treatment-seeking alcoholics and social drinkers. Alcohol Clin Exp Res 2004; 28: 1362-1370.
  • 54 McCaul ME, Wand GS, Eissenberg T, Rohde CA, Cheskin LJ. Naltrexone alters subjective and psychomotor responses to alcohol in heavy drinking subjects. Neuropsychopharmacology 2000; 22: 480-492.
  • 55 Peciña M, Love T, Stohler CS, Goldman D, Zubieta JK. Effects of the mu opioid receptor polymorphism (OPRM1 A118G) on pain regulation, placebo effects and associated personality trait measures. Neuropsychopharmacology 2015; 40: 957-965.
  • 56 Bond C, LaForge KS, Tian M, Melia D, Zhang S, Borg L, Gong J, Schluger J, Strong JA, Leal SM, Tischfield JA, Kreek MJ, Yu L. Single-nucleotide polymorphism in the human mu opioid receptor gene alters beta-endorphin binding and activity: possible implications for opiate addiction. Proc Natl Acad Sci USA 1998; 95 (16) 9608-13.
  • 57 Woodcock EA, Lundahl LH, Burmeister M, Greenwald MK. Functional mu opioid receptor polymorphism (OPRM1 A118G) associated with heroin use outcomes in Caucasian males: A pilot study. Am J Addict 2015; 24: 329-335.
  • 58 Kreek MJ, Nielsen DA, Butelman ER, LaForge KS. Genetic influences on impulsivity, risk taking, stress responsivity and vulnerability to drug abuse and addiction. Nat Neurosci 2005; 08: 1450-1457.
  • 59 Chamorro AJ, Marcos M, Mirón-Canelo JA, Pastor I, González-Sarmiento R, Laso FJ. Association of µ-opioid receptor (OPRM1) gene polymorphism with response to naltrexone in alcohol dependence: A systematic review and meta-analysis. Addict Biol 2012; 07: 505-512.
  • 60 Yeomans MR, Gray RW. Opioid peptides and the control of human ingestive behaviour. Neurosci Biobehav Rev 2002; 26: 713-728.
  • 61 Nathan PJ, Bullmore ET. From taste hedonics to motivational drive: Central-opioid receptors and binge-eating behaviour. Int J Neuropsychopharmacol 2009; 12: 995-1008.
  • 62 Cottone P, Sabino V, Steardo L, Zorrilla EP. Opioid-dependent anticipatory negative contrast and binge-like eating in rats with limited access to highly preferred food. Neuropsychopharmacology 2008; 33: 524-535.