Thromb Haemost 1985; 53(03): 390-395
DOI: 10.1055/s-0038-1661321
Original Article
Schattauer GmbH Stuttgart

Effect of Carbohydrate Modifications of Factor VIII/ von Willebrand Factor on Binding to Platelets

Jenny Goudemand
Université des Sciences et Techniques de Lille I, France
,
Claudine Mazurier
Université des Sciences et Techniques de Lille I, France
,
B Samor
Université des Sciences et Techniques de Lille I, France
,
S Bouquelet
*   The Laboratoire d’Hémostase du Centre Régional de Transfusion Sanguine de Lille et Laboratoire de Chimie Biologique et Laboratoire associé au CNRS n° 217
,
J Montreuil
*   The Laboratoire d’Hémostase du Centre Régional de Transfusion Sanguine de Lille et Laboratoire de Chimie Biologique et Laboratoire associé au CNRS n° 217
,
M Goudemand
Université des Sciences et Techniques de Lille I, France
› Author Affiliations
Further Information

Publication History

Received 13 December 1984

Accepted 21 March 1985

Publication Date:
21 August 2018 (online)

Summary

This study compares the ability of unmodified and carbohydrate-modified forms of factor VIII/von Willebrand factor (FVIII/vWF) protein to bind to platelets in the presence of ristocetin or thrombin. Treatment of intact FVIII/vWF with α-D- neuraminidase results in more than 95% desialylation. Asialo FVIII/vWF retains total activity in ristocetin- and thrombin- mediated binding to platelets as demonstrated by direct and competitive binding assays. Examination of its multimeric pattern by sodium dodecyl sulfate-agarose electrophoresis reveals a normal multimeric structure. Treatment of intact FVIII/vWF with β-D-galactosidase results in the removal of 20% of galactose (agalacto FVIII/vWF) whereas 55% of galactose is released from asialo FVIII/vWF (asialo agalacto FVIII/vWF). Agalacto and asialo-agalacto FVIII/vWF are both unable to bind to platelets in the presence of ristocetin. In contrast, they still bind to thrombin- stimulated human (except thrombasthenic) platelets. Removal of either ultimate (agalacto FVIII/vWF) or ultimate and penultimate (asialo-agalacto FVIII/vWF) galactose results in the same loss of the larger molecular weight multimers and in an increase of smaller multimers. These results suggest (1) that sialic acid does not play a significant role in ristocetin- or thrombin-mediated FVIII/vWF-platelets interactions and multimeric structure of FVIII/vWF (2) that ultimate β-linked galactose residues are essential for the maintenance of a normal multimer organization (3) that ristocetin- and thrombin-mediated binding of FVIII/vWF to platelets differ in FVIII/vWF galactose requirement.

 
  • References

  • 1 Samor B, Mazurier C, Goudemand M, Debeire P, Fournet B, Montreuil J. Preliminary results on the carbohydrate moiety of factor VIII/von Willebrand factor (FVIII/vWF). Thromb Res 1982; 25: 81-89
  • 2 Sodetz JM, Paulson JC, McKee PA. Carbohydrate composition and identification of blood group A, B and H oligosaccharide structures on human factor VIII/von Willebrand factor. J Biol Chem 1979; 254: 10754-10760
  • 3 Debeire P, Montreuil J, Samor B, Mazurier C, Goudemand M, van Halbeek H, Vliegenthart JF. Structure determination of the major asparagine-linked sugar chain on human factor VIII/von Willebrand factor. Febs Lett 1983; 151: 22-26
  • 4 Sodetz JM, Pizzo SV, McKee PA. Relationship of sialic acid to function and in vivo survival of human factor VIII/von Willebrand factor protein. J Biol Chem 1977; 252: 5538-5546
  • 5 Sodetz JM, Paulson JC, Pizzo SV, McKee PA. Carbohydrate on human factor VIII/von Willebrand factor. Impairment of function by removal of specific galactose residues J Biol Chem 1978; 253: 7202-7206
  • 6 Rosenfeld L, Kirby EP. The effect of neuraminidase treatment on the biological activities of factor VIII. Thromb Res 1979; 15: 255-261
  • 7 Kao KJ, Pizzo SV, McKee PA. Factor VIII/von Willebrand protein. Modification of its carbohydrate causes reduced binding to platelets J Biol Chem 1980; 255: 10134-10139
  • 8 Vermylen J, Bottechia D, Szpilman H. Factor VIII and human platelet aggregation. III. Further studies on aggregation of human platelets by neuraminidase-treated human factor VIII. Br J Haematol 1976; 34: 321-330
  • 9 Fukui H, Mikami S, Okuda T, Murashima N, Takase T, Yoshioka A. Studies on von Willebrand factor: effect of different kinds of carbohydrate oxidases, SH-inhibitors and some other chemical reagents. Br J Haematol 1977; 36: 259-270
  • 10 Gralnick HR. Factor VIII/von Willebrand factor protein: galactose a cryptic determinant of von Willebrand factor activity. J Clin Invest 1978; 62: 496-500
  • 11 Morisato DK, Gralnick HR. Selective binding of the FVIII/vWF protein to human platelets. Blood 1980; 55: 9-15
  • 12 De Marco L, Shapiro SS. Properties of human asialo factor VIII. A ristocetin-independent platelet aggregating agent. J Clin Invest 1981; 68: 321-328
  • 13 Gralnick HR, Williams SB, Rick ME. Role of carbohydrate in multimeric structure of factor VIII/von Willebrand factor protein. Proc Nat Acad Sci USA 1983; 80: 2771-2774
  • 14 Soulier JP, Larrieu MJ. Nouvelle méthode de diagnostic de l’hémophilie. Dosage des facteurs antihémophiliques A et B Sang 1953; 24: 205-215
  • 15 Mazurier C, Parquet-Gernez A, Goudemand M. Dosage de l’antigéne lié au facteur VIII par la technique ELISA. Intérêt dans l’étude de la maladie de Willebrand Path Biol 1977; 25: 18-24
  • 16 Weiss HJ, Hoyer LW, Rickies FR, Varma A, Rogers J. Quantitative assay of a plasma factor deficient in von Willebrand’s disease that is necessary for platelet aggregation. J Clin Invest 1973; 52: 2708-2716
  • 17 Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem 1951; 193: 265-275
  • 18 Li YT, Li SC. Alpha-mannosidase, beta-N-acetylhexosaminidase and beta-galactosidase from Jack Bean Meal. In Methods in Enzymology. Ginsburg V. (Ed.) Academic Press; New York/London: 1972. 28 702-713
  • 19 Zanetta JP, Brekenridge WC, Vincendon G. Analysis of monosaccharides by gas-liquid chromatography of the O-methylglycosides as trifluoroacetate derivatives. Application to glycoproteins and glycolipids J Chromatogr 1972; 69: 291-304
  • 20 Warren L. The thiobarbituric acid assay of sialic acids. J Biol Chem 1959; 234: 1971-1975
  • 21 Finch RP, Yven R, Schacter H, Moscarello MA. Enzymatic methods for the microassay of D-mannose, D-glucose, D-galactose and L- fucose from acid hydrolyzates of glycoproteins. Anal Biochem 1969; 31: 296-305
  • 22 Patscheke H. Shape and functional properties of human platelets washed with acid citrate. Haemostasis 1981; 10: 14-27
  • 23 Ruan C, Tobelem G, McMichael AJ, Drouet L, Legrand Y, Degos L, Kieffer N, Lee H, Caen JP. Monoclonal antibody to human platelet glycoprotein I. II. Effects on human platelet function. Br J Haematol 1981; 49: 511-519
  • 24 Ruggeri ZM, Zimmerman TS. The complex multimeric composition of factor VIII/von Willebrand factor. Blood 1981; 57: 1140-1143
  • 25 Enayat MS, Hill FG H. Analysis of the complexity of the multimeric structure of factor VIII related antigen/von Willebrand protein using a modified electrophoretic technique. J Clin Pathol 1983; 36: 915-919
  • 26 Mazurier C, Parquet-Gernez A, Samor B, Goudemand M, Montreuil J. Etude de l’antigène lié au facteur VIII (VIIIR : Ag). Purification par chromatographie d’immuno-affinité C R Acad Sc Paris 1979; 288: 1431-1434
  • 27 Vermylen J, De Gaetano G, Donati MB, Verstraete M. Plateletaggregating activity in neuraminidase-treated human cryoprecipitates: its correlation with factor VIII related antigen. Br J Haematol 1974; 26: 645-650
  • 28 Kessler CM, Floyd CM, Franz S. Effect of carbohydrate modification on factor VIII/von Willebrand factor protein - collagen interaction. Clin Res 1983; 31: 316 (Abstr.)
  • 29 Mikami S, Ueda M, Yasui M, Takahashi Y, Nishino M, Fukui H. Heterogeneity of sugar composition of factor VIII/von Willebrand factor in von Willebrand’s disease: analysis by crossed affinoimmunoelectrophoresis using lectin (Ricinus Communis Agglutinin-120). Thromb Haemostas 1983; 49: 87-90
  • 30 Furlan M, Perret BA, Beck EA. Studies on factor VIII-related protein IV. Interaction of galactose-specific lectins with human factor VIII/von Willebrand factor. Biochim Biophys Acta 1980; 623: 402-411
  • 31 Gralnick HR, Williams SB, Morisato DK. Effect of the multimeric structure of the factor VIII/von Willebrand factor protein on binding to platelets. Blood 1981; 58: 387-397
  • 32 Zimmerman TS. Von Willebrand’s disease. Prog Hemostas Thromb 1982; 6: 203-236
  • 33 Ruggeri ZM, De Marco L, Gatti L, Bader R, Montgomery RR. Platelets have more than one binding site for von Willebrand factor. J Clin Invest 1983; 72: 1-12
  • 34 Coller BS, Peerschke EI, Scudder LE, Sullivan CA. Studies with a murine monoclonal antibody that abolishes ristocetin-induced binding of von Willebrand factor to platelets: additional evidence in support of Gplb as platelet receptor for von Willebrand factor. Blood 1983; 61: 99-110
  • 35 Moake JL, Olson JD, Troll JH, Tang SS, Funicella T, Peterson DM. Binding of radioiodinated human von Willebrand factor to Bernard-Soulier, thrombasthénie and von Willebrand’s disease platelets. Thromb Res 1980; 19: 21-27
  • 36 Ruan C, Tobelem G, Caen JP. Liaison du facteur VIII/Willebrand aux plaquettes de syndrome de Bernard-Soulier et de thrombasthénie de Glanzmann. Nouv Rev Fr Hematol 1981; 23: 89-93
  • 37 Nokes TJ C, Mahmoud NA, Savidge GF, Goodall A, Meyer D, Edgington TS, Hardisty RM. Von Willebrand factor has more than one binding site for platelets. Thromb Res 1984; 24: 361-366
  • 38 Sixma JJ, Sakariassen KS, Beeser-Visser NH, Ottenhof-Rovers M, Bolhuis PA. Adhesion of platelets to human artery subendothelium: effect of factor VIII/von Willebrand factor of various multimeric composition. Blood 1984; 63: 128-139