Thromb Haemost 1997; 78(01): 595-598
DOI: 10.1055/s-0038-1657595
Structure and mechanism of action of vitamin K-dependent gamrnt-ctrboxylase
Schattauer GmbH Stuttgart

Structure and Mechanism of Action of the Vitamin K-Dependent γ-Glutamyl Carboxylase: Recent Advances from Mutagenesis Studies

Barbara C Furie
Division of Hematology/Oncology and the Center for Hemostasis and Thrombosis Research, New England Medical Center and the Departments of Medicine and Biochemistry, Tufts University School of Medicine, Boston, MA, USA
,
Bruce Furie
Division of Hematology/Oncology and the Center for Hemostasis and Thrombosis Research, New England Medical Center and the Departments of Medicine and Biochemistry, Tufts University School of Medicine, Boston, MA, USA
› Author Affiliations
Further Information

Publication History

Publication Date:
21 August 2018 (online)

 
  • References

  • 1 Freedman SJ, Furie BC, Furie B, and Baleja JD. Structure of the calcium ion-bound ϒ-carboxyglutamic acid-rich domain of factor IX. Biochemistry 1995; 34: 12126-12137
  • 2 Soriano-Garcia M, Padmanabhan K, de Vos AM, and Tulinsky A. The Ca2+ ion and membrane binding structure of the Gla domain of Ca-prothrombin fragment 1. Biochemistry 1992; 31: 2554-2566
  • 3 Freedman SJ, Blostein MD, Baleja JD, Jacobs M, Furie BC, and Furie B. Identification of the phospholipid binding site in the vitamin K-dependent blood coagulation protein factor IX. J. Biol. Chem 1996; 271: 16227-16236
  • 4 Furie B, and Furie BC. The molecular basis of blood coagulation. Cell 1988; 53: 505-518
  • 5 Wood GM, and Suttie JW. Vitamin K-dependent carboxylase: Stoichiometry of vitamin K epoxide formation, γ-carboxyglutamyl formation, and ϒ-glutamyl-3H cleavage. J. Biol. Chem 1988; 263: 3234-3239
  • 6 Morris DP, Soute BAM, Vermeer C, and Stafford DW. Characterization of the purified vitamin K-dependent glutamyl carboxylase. J. Biol. Chem 1993; 268: 8735-8742
  • 7 Sugiura I, Furie B, Wash C, and Furie BC. Regulation of the epoxidase activity of the vitamin K-dependent carboxylase by propepetide and glutamate containing substrates. Submitted.
  • 8 Dowd P, Hershline R, Ham SW, and Naganathan S, Vitamin K. and energy transduction: A base strength amplification mechanism. Science 1995; 269: 1684-1691
  • 9 Hubbard BR, Ulrich MMW, Jacobs M, Vermeer C, Walsh C, Furie B, and Furie BC. Vitamin K-dependent carboxylase: Affinity purification from bovine liver by using a synthetic propeptide containing the ϒ-carboxylation recognition site. Proc. Natl. Acad. Sci. USA 1989; 86: 6893-6897
  • 10 Wu S-M, Morris DP, and Stafford DW. Identification and purification to near homogeneity of the vitamin K-dependent carboxylase. Proc. Natl. Acad. Sci. USA 1991; 88: 2236-2240
  • 11 Kuliopulos A, Cieurzo CE, Furie B, Furie BC, and Walsh CT. N-Bromoacetyl-peptide substrate affinity labelling of vitamin K-dependent carboxylase. Biochemistry 1992; 31: 9436-9444
  • 12 Wu S-M, Cheung W-F, Frazier D, and Stafford DW. Cloning and expression of the cDNA for human ϒ-glutamyl carboxylase. Science 1991; 254: 1634-1636
  • 13 Rehemtulla A, Roth DA, Wasley LC, Kuliopulos A, Walsh CT, Furie B, Furie BC, and Kaufman RJ. In vitro and in vivo functional characterization of bovine vitamin K-dependent ϒ-car-boxylase expressed in Chinese hamster ovary cells. Proc. Natl. Acad. Sci. USA 1993; 90: 4611-4615
  • 14 Roth DA, Whirl ML, Velazquez-Estades LJ, Walsh CT, Furie B, and Furie BC. Mutagenesis of vitamin K-dependent carboxylase demonstrates a carboxyl terminus-mediated interaction with vitamin K hydroquinone. J. Biol. Chem 1995; 270: 5305-5311
  • 15 Brody T, and Suttie JW. Evidence for the glycoprotein nature of vitamin K-dependent carboxylase. Biochim. Biophys. Acta 1987; 923: 1-7
  • 16 Carlisle TL, and Suttie JW. Vitamin K-dependent carboxylase: subcellular location of the carboxylase and enzymes involved in vitamin K metabolism in rat liver. Biochemistry 1980; 19: 1161-1167
  • 17 Bristol JA, Ratcliffe JV, Roth DA, Jacobs MA, Furie BC, and Furie B. Biosynthesis of prothrombin: Intracellular localization of the vitamin K-dependent carboxylase and sites of γ-carboxylation. Blood 1996; 88: 2585-2593
  • 18 Knobloch JE, and Suttie JW. Vitamin K-dependent carboxylase. Control of enzyme activity by the “propeptide” region of Fac-torX. J. Biol. Chem 1987; 262: 15334-15337
  • 19 Ulrich MMW, Furie B, Jacobs MR, Vermeer C, and Furie BC. Vitamin K-dependent carboxylation: A synthetic peptide based upon the ϒ-carboxylation recognition site sequence of the prothrombin propeptide is an active substrate for the carboxylase in vitro. J. Biol. Chem 1988; 263: 9697-9702
  • 20 Kuliopulos A, Nelson NP, Yamada M, Walsh CT, Furie B, Furie BC, and Roth DA. Localization of the affinity peptide-substrate inactivator site on recombinant vitamin K-dependent carboxylase. J. Bioll. Chem 1994; 269: 21364-21370
  • 21 Yamada M, Kuliopulos A, Nelson NP, Roth DA, Furie B, Furie BC, and Walsh CT. Localization of the factor IX propeptide binding site on recombinant vitamin K-dependent carboxylase using benzoylphenylalanine photoaffinity peptide inactivators. Biochemistry 1995; 34: 481-489
  • 22 Sugiura I, Furie B, Walsh CT, and Furie BC. Profactor IX propeptide and glutamate substrate binding sites on the vitamin K-dependent carboxylase identified by site-directed mutagenesis. J. Biol. Chem 1996; 271: 17837-17844
  • 23 Suttie JW, Geweke LO, Martin GSL, and Willingham AK. Vitamin K epoxidase: dependence of epoxidase activity on substrates of the vitamin K-dependent carboxylation reaction. FEBS Letters 1980; 109: 267-270
  • 24 deMetz M, Soute BA, Hemker HC, Fokkens R, Lugtenberg J, and Vermeer C. Studies on the mechanism of the vitamin K-dependent carboxylation reaction. Carboxylation without the concurrent formation of vitamin K 2,3-epoxide. J. Biol. Chem 1982; 257: 5326-5329
  • 25 Larson AE, Friedman PA, and Suttie JW. Vitamin K-dependent carboxylase. Stoichiometry of carboxylation and vitamin K 2,3-epoxide formation. J. Biol. Chem 1981; 256: 11032-11035