Thromb Haemost 1997; 78(01): 339-343
DOI: 10.1055/s-0038-1657549
Molecular basis of inherited thrombophilia: from genedefects to disease
Schattauer GmbH Stuttgart

Antithrombin: Molecular Basis of Deficiency

Trevor A Bayston
Department of Haematology, Charing Cross and Westminster Medical School, Hammersmith Hospital, London, UK
,
David A Lane
Department of Haematology, Charing Cross and Westminster Medical School, Hammersmith Hospital, London, UK
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
12. Juli 2018 (online)

 
  • References

  • 1 Abildgaard U. Binding of thrombin to antithrombin III. Scand J Clin Lab Invest 1969; 24: 23-27
  • 2 Rosenberg RD, Damus PS. The purification and mechanism of action of human antithrombin-heparin cofactor. J Biol Chem 1973; 248: 6490-505
  • 3 Hunt LT, Dayhoff MO. A suprising new protein superfamily containing ovalbumin, antithrombin III and a1-proteinase inhibitor. Biochem Biophys Res Commun 1980; 95: 864-871
  • 4 Schreuder HA, de Boer B, Dijkema R, Mulders J, Theunissen HJM, Grootenhuis PDJ, Hoi WGJ. The intact and cleaved human antithrombin III complex as a model for serpin-protein- ase interactions. Nature Struct Biol 1994; 01: 48-54
  • 5 Mourey L, Samama JP, Delarue M, Petitou M, Choay J, Moras D. Crystal structure of cleaved bovine antithrombin III at 3.2A resolution. J Mol Biol 1993; 232: 223-241
  • 6 Carrell RW, Stein PE, Fermi G, Wardell MR. Biological implications of a 3A structure of dimeric antithrombin. Structure 1994; 02: 257-270
  • 7 Olds RJ, Lane DA, Chowdhury V, De StefanoV, Leone G, Thein SL. Complete nucleotide sequence of the antithrombin gene. Evidence for homologous recombination causing thrombophilia. Biochemistry 1993; 32: 4216-4124
  • 8 Prochownik EV. Relationship between an enhancer element in the human anti thrombin III gene and an immunoglobulin light- chain gene enhancer. Nature 1985; 316: 845-848
  • 9 Ochoa A, Brunei F, Mendelzon D, Cohen GN, Zakin MM. Different liver nuclear proteins binds to similar DNA sequences in the 5' flanking regions of three hepatic genes. Nucleic Acid Res 1989; 17: 119-133
  • 10 Niessen RWLM, Rezaee F, Reitsma P, Peters M, De VijlderJJM. Ligand-dependent enhancement of human antithrombin gene expression by retinoid X receptor a and thyroid hormone receptor b. Biochem J 1996; 318: 263-270
  • 11 Fernandez-Rachubinski FA, Weiner JH, Blajchman MA. Regions flanking exon 1 regulate constitutive expression of the human antithrombin gene. J Biol Chem 1996; 271: 29502-29512
  • 12 Picard V, Ersdal-Badju E, Bock SC. Partial glycosylation of antithrombin III asparagine 135 is caused by the serine in the third position of its N-glycosylation consensus sequence and is responsible for production of the b-antithrombin III isoform with enhanced heparin affinity. Biochemistry 1995; 34: 8433-4840
  • 13 Turko IV, Fan B, Gettins PGW. Carbohydrate isoforms of antithrombin variant N135Q with different heparin affinities. FEBS Lett 1993; 335: 9-12
  • 14 Skriver K, Wikoff WR, Patston PA, Tausk F, Schapira M, Kaplan AP, Bock SC. Substrate properties of Cl inhibitor Ma (A434E). Genetic and structural evidence suggesting that the ‘PI2-region’ contains critical determinants of serpin inhibitor/substrate status. J Biol Chem 1991; 266: 9216-9221
  • 15 Bjork I, Olson ST, Shore JD. Molecular mechanisms of the accelerating effect of heparin on the reactions between antithrombin and the clotting proteinases. In: Heparin: Chemical and Biological Properties Clinical Applications. Lane DA, Lindahl U. (eds) Edward Arnold; London: 1989. pp 229-155
  • 16 Olson ST, Bjork I. Predominant contribution of surface approximation to the mechanism of heparin acceleration of the antithromaûn-thrombin reaction. Elucidation from salt concentration effects. J Biol Chem 1991; 266: 6353-6364
  • 17 Lane DA, Denton J, Flynn AM, Thunberg L, Lindahl U. Anticoagulant activities of heparin oligosaccharides and their neutralization by platelet factor 4. Biochem J 1984; 218: 725-732
  • 18 Casu B, Oreste P, Torri G. The structure of heparin oligosaccharide fragments with high anti-(factor Xa) activity containing the minimal antithrombin III binding sequence. Biochem J 1981; 80: 599-609
  • 19 Thunberg L, Backstrom G, Lindahl U. Further characterization of the antithrombin-binding sequence in heparin. Carbohydr Res 1982; 100: 393-410
  • 20 Atha DH, Stephens AW, Rosenberg RD. Evaluation of critical groups required for binding of heparin to antithrombin. Proc Natl Acad Sci USA 1984; 81: 1030-1034
  • 21 Gettins PGW, Fan B, Crews BC, Turko IV, Olson ST, Streusand VJ. Transmission of conformational change from the heparin binding site to the reactive centre of antithrombin. Biochemistry 1993; 32: 8385-8389
  • 22 Dawes J, James K, Lane DA. The conformational change in antithrombin induced by heparin, probed with a monoclonal antibody against the 1C/4B region. Biochemistry 1994; 33: 4375-4383
  • 23 Fan B, Turko IV, Gettins PGW. Lysine-heparin interactions in antithrombin. Properties of K125M and K290M, K294M, K297M variants. Biochemistry 1994; 33: 14156-14161
  • 24 van BoeckelCAA, Grootenhuis PDJ, Visser A. A mechanism for heparin-induced potentitation of anti thrombin III. Nature Struct Biol 1994; 01: 423-425
  • 25 Huntington JA, Olson ST, Fan B, Gettins PGW. Mechanism of heparin activation of antithrombin. Evidence for reactive centre loop preinsertion with expulsion upon heparin binding. Biochemistry 1996; 35: 8495-8503
  • 26 Lane DA, Olds RJ, Boisclair M, Chowdhury V, Thein SL, Cooper DN, Blajchman M, Perry D, Emmerich J, Aiach M. Antithrombin III mutation database: first update. Thromb Haemost 1993; 70: 361-369
  • 27 Lane DA, Bayston T, Olds RJ, Fitches AC, Cooper DN, Millar DS, Jochmans K, Perry DJ, Okajima K, Emmerich J, Thein SL. Antithrombin mutation database: 2nd (1997) update. Thromb Haemost 1997; 77: 197-211
  • 28 Thaler E, Lechner K. Antithrombin III deficiency and thromboembolism. Clin Haematol 1981; 10: 369-390
  • 29 van Boven HH, Olds RJ, Thein SL, Reitsma PH, Lane DA, Briet E, Vandenbroucke JP, Rosendaal FR. Hereditary antithrombin deficiency: heterogeneity of the molecular basis and mortality in Dutch families. Blood 1994; 84: 4209-4213
  • 30 Lane DA, Mannucci PM, Bauer KA, Bertina RM, Bochkov NP, Boulyjenkov V, Chandy M, Dahlback B, Ginter EK, Milletich JP, Rosendaal FR, Seligsohn U. Inherited Thrombophilia: Part 1. Thromb Haemost 1996; 76: 651-662
  • 31 van BovenHH, Reitsma PH, Rosendaal FR, Bayston TA, Chowdhury V, Bauer K, Scharrer I, Conard J, Lane DA. Factor V Leiden (FV R506Q) in families with inherited antithrombin deficiency. Thromb Haemost 1996; 75: 417-421
  • 32 Watton J, Longstaff C, Lane DA, Barrowcliffe TW. Heparin binding affinity of normal and genetically modified antithrombin III measured using a monoclonal antibody to the heparin binding site of antithrombin III. Biochemistry 1993; 32: 7286-7293
  • 33 Lane DA, Olds RJ, Conard J, Boisclair M, Bock SC, Hultin M, Abildgaard U, Ireland H, Thompson E, Sas G, Horellou MH, Tamponi G, Thein SL. Pleiotropic effects of antithrombin strand 1C substitution mutations. J Clin Invest 1992; 90: 2422-2433
  • 34 Mille B, Watton J, Barrowcliffe TW, Mani JC, Lane DA. Role of N and C terminal amino acids in antithrombin binding to pentasaccharide. J Biol Chem 1994; 269: 29435-29443
  • 35 Sheffield WP, Castillo JE, Blajchman MA. Intracellular events determine the fate of antithrombin Utah. Blood 1995; 86: 3461-3467