Semin Respir Crit Care Med 2018; 39(03): 325-335
DOI: 10.1055/s-0038-1651491
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Epidemiology of Nontuberculous Mycobacteriosis

Jennifer Adjemian
1  Epidemiology Unit, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
2  Commissioned Corps, United States Public Health Service, Rockville, Maryland
,
Shelby Daniel-Wayman
1  Epidemiology Unit, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
,
Emily Ricotta
1  Epidemiology Unit, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
,
D. Rebecca Prevots
1  Epidemiology Unit, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
› Author Affiliations
Further Information

Publication History

Publication Date:
02 August 2018 (online)

Abstract

Annual prevalence estimates for pulmonary nontuberculous mycobacterial (PNTM) disease in the contiguous United States range from 1.4 to 13.9 per 100,000 persons, while one study found an annual prevalence of up to 44 per 100,000 persons in Hawaii. PNTM prevalence varies by region, sex, and race/ethnicity, with higher prevalence among women and persons of Asian ancestry, as well as in the Southern United States and Hawaii. Studies consistently indicate that PNTM prevalence is increasing, with estimates ranging from 2.5 to 8% per year. Most PNTM disease is associated with Mycobacterium avium complex (MAC), although the proportion of disease attributed to MAC varies by region. Host factors identified as influencing disease risk include structural lung disease, immunomodulatory medication, as well as variants in connective tissue, mucociliary clearance, and immune genes. Environmental variables including measures of atmospheric moisture and concentrations of certain soil factors have also been shown to correlate with higher PNTM prevalence. Prevalence of extrapulmonary NTM disease is lower, stable, and associated with different risk factors, including primary immune deficiencies or HIV infection.