Methods Inf Med 1994; 33(01): 28-31
DOI: 10.1055/s-0038-1634965
Original Article
Schattauer GmbH

ARX Filtering of Single-Sweep Movement-Related Brain Macropotentials in Mono- and Multi-Channel Recordings

L. Capitanio
,
G. C. Filligoi
,
D. Liberati
2   Centro Teoria Sistemi del CNR – Politecnico di Milano, Milan, Italy
,
S. Cerutti
1   Universitàdi Roma “La Sapienza”, Rome, Italy
,
F. Babiloni
3   Ist. Fisiologia Umana – Università di Roma “La Sapienza”, Rome, Italy
,
L. Fattorini
3   Ist. Fisiologia Umana – Università di Roma “La Sapienza”, Rome, Italy
,
A. Urbano
3   Ist. Fisiologia Umana – Università di Roma “La Sapienza”, Rome, Italy
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
08. Februar 2018 (online)

Preview

Abstract:

A technique of stochastic parametric identification and filtering is applied to the analysis of single-sweep event-related potentials. This procedure, called AutoRegressive with n exogenous inputs (ARXn), models the recorded signal as the sum of n+1 signals: the background EEG activity, modeled as an autoregressive process driven by white noise, and n signals, one of which represents a filtered version of a reference signal carrying the average information contained in each sweep. The other (n-1) signals could represent various sources of noise (i.e., artifacts, EOG, etc.). An evaluation of the effects of both artifact suppression and accurate selection of the average signal on mono- or multi-channel scalp recordings is presented.