Methods Inf Med 1992; 31(04): 225-233
DOI: 10.1055/s-0038-1634879
Original Article
Schattauer GmbH

Computerized Electrocardiogram Diagnosis: Fuzzy Approach[2]

Rosanna Degani1
1   Formerly with LADSEB-CNR, Padova, Italy
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
07. Februar 2018 (online)

Abstract:

This paper investigates the computerized analysis of electrocardiographic signals. The biological variability, the laáck of standards in the definition of measurements and of diagnostic criteria make the classification problem a complex task. Two basic methods of the diagnostic process are described: the statistical model and the deterministic approach. In particular, a model for ECG classification will be illustrated where the imprecise knowledge of the state of cardiac system and the vague definition of the pathological classes are taken care of by means of the fuzzy set formalism.

1 This paper was originally published by Rosanna Degani and Giovanni Bortolan. The second author retracts his authorship in homage to Dr. Degani and in remembrance of her friendship.


2 Reprinted with permission from Pergamon Press, Oxford, U.K., from: Singh, MG, ed. Systems and Control Encyclopedia. Oxford: Pergamon Press, 1989: 760-9.


 
  • REFERENCES

  • 1 Bortolan G, Degani R. A review of some methods for ranking fuzzy subsets. Fuzzy Sets Syst 1985; 15: 1-19.
  • 2 Cooksey JD, Dunn M, Massie E. Clinical Vectorcardiography and Electrocardiography. Year Book Medical Publ; 1977: 159.
  • 3 Degani R, Bortolan G. Combining measurements = precision and fuzzy diagnostic criteria. In: Willems JL, van Bemmel JH, Zywietz C. eds. Computer ECG Analysis: Towards Standardization. Amsterdam: North-Holland Publ Comp; 1986: 177-82.
  • 4 Degani R, Pacini G. Linguistic pattern recognition algorithms for computer analysis of ECG. In: Proceedings of BIOSIGMA Conference. Paris: 1978: 18-26.
  • 5 De Mori R, Saitta L. Automatic learning of naming relations over finite languages. Inf Sci 1980; 21: 93-139.
  • 6 Dubois D, Prade H. Fuzzy Sets and Systems: Theory and Applications. New York: Academic Press; 1980
  • 7 Efstathiou J, Rajkovic V. Multiattribute decision-making using a fuzzy heuristic approach. IEEE Trans Syst Man Cybern 1979; 09: 326-33.
  • 8 Jain R. Decision making in the presence of fuzzy variables. IEEE Trans Syst Man Cybern 1976; 06: 698-703.
  • 9 Jenkins JM. Computerized electrocardiography. CRC Crit Rev Bioengin 1981; 06: 307-50.
  • 10 Lesmo L, Saitta L, Torasso P. Computer-aided evaluation of liver functional assessment. In: Proceedings of the 4th SCAMC. New York: IEEE Computer Society; 1980: 181-9.
  • 11 Pipberger HV, Arzbaecher RC, Berson AS, Briller SA, Brody DA, Flowers NC, Geselowitz DB, Lepeschkin E, Oliver GC, Schmitt OH, Spach M. Recommendations for standardization of leads and of specifications for instruments in electrocardiography and vectorcardiography. Circulation 1975; 52: 11-31.
  • 12 Sanchez E, Gouvernet J, Bartolin R, Vovan L. Linguistic approach in fuzzy logic of the WHO classification of dyslipoproteinemias. In: Yager RR. ed. Fuzzy Set and Possibility Theory. New York: Pergamon; 1982: 582-88.
  • 13 Surawicz B, Uhley H, Borun R, Laks M, Crevasse L, Rosen K, Nelson W, Mandel W, Lawrence P, Jackson L, Flowers N, Clifton J, Greenfield J, Robles de Medina EO. Task Force I: Standardization of terminology and interpretation. Am J Cardiol 1978; 41: 130-45.
  • 14 Van Bemmel JH, Willems JL. eds. Trends in Computer Processed Electrocardiograms. Amsterdam: North-Holland Publ Comp; 1977