Methods Inf Med 1990; 29(04): 282-288
DOI: 10.1055/s-0038-1634809
ECG Interpretation Systems
Schattauer GmbH

The Role of Computer Modeling in Electrocardiography

A. van Oosterom
1   Laboratory of Medical Physics and Biophysics, University of Nijmegen, Nijmegen, The Netherlands
› Author Affiliations
The author is indebted to Geertjan Huiskamp and Thorn F. Oostendorp for their cooperation in the preparation of this paper and their cooperation in this research, as well as to Judith I. van Oosterom-Pooley for her support with the use of the English.
Further Information

Publication History

Publication Date:
06 February 2018 (online)

Abstract

This paper introduces some levels at which the computer has been incorporated in the research into the basis of electrocardiography. The emphasis lies on the modeling of the heart as an electrical current generator and of the properties of the body as a volume conductor, both playing a major role in the shaping of the electrocardiographic waveforms recorded at the body surface. It is claimed that the Forward-Problem of electrocardiography is no longer a problem. Several source models of cardiac electrical activity are considered, one of which can be directly interpreted in terms of the underlying electrophysiology (the depolarization sequence of the ventricles). The importance of using tailored rather than textbook geometry in inverse procedures is stressed.

 
  • REFERENCES

  • 1 Bellman RE. Adaptive Control Processes. Princeton NJ: Princeton Univ Press; 1961
  • 2 Meisel WS. Computer-Oriented Approaches to Pattern Recognition. New York: Academic Press; 1972
  • 3 Helmholtz H. Ueber einiger Gezetze der Verteilung elektrischer Strome in korper-lichen Leiter mit Anwendung auf die thierisch-elektrischen Versuche. Pogg Ann Physik und Chemie 1853; 89: 211-33 353-77..
  • 4 Gulrajani RM, Roberge FA, Mailloux GE. The forward problem of electrocardiography. In: Macfarlane PW, Lawrie TV. eds. Comprehensive Electrocardiolo-gy. Oxford: Pergamon Press; 1988: 197-236.
  • 5 Swihart JC. Numerical methods for solving the forward problem in electrocardiography. In: Nelson CV, Geselowitz DB. eds. The Theoretical Basis of Electrocar-diology. Oxford: Clarendon Press; 1976: 257-93.
  • 6 Gulrajani RM, Roberge FA, Savard P. The inverse problem of electrocardiography. In: Macfarlane PW, Lawrie TV. eds. Comprehensive Electrocardiology. Oxford: Pergamon Press; 1988: 237-88.
  • 7 De Ambroggi L, Musso E, Taccardi B. Body-surface mapping. In: Macfarlane PW, Lawrie TV. eds. Comprehensive Electrocardiology. Oxford: Pergamon Press; 1988: 1015-50.
  • 8 Gulrajani RM, Savard P, Roberge FA. The inverse problem in electrocardiography: solutions in terms of equivalent sources. CRC Crit Rev in Biomed Eng. 1988 16/3: 1171-214.
  • 9 Plonsey R. Bioelectric Phenomena. New York: Mcgraw-Hill; 1967
  • 10 Panofski WKH, Phillips M. Classical Electricity and Magnetism. London: Addison-Wesley; 1962
  • 11 Van Oosterom A. Cell models-macroscopic source descriptions. In: Macfarlane PW, Lawrie TV. eds. Comprehensive Electrocardiology. Oxford: Pergamon Press; 1988: 155-79.
  • 12 Van Oosterom A, Strackee J. The solid angle of a plane triangle. IEEE Trans Biomed Eng 1983; 30: 125-6.
  • 13 Wilson FN, Macleod AG, Barker PS. The distribution of action currents produced by the heart muscle and other excitable tissues immersed in extensive conduction media. J Gen Physiol 1933; 16: 423-56.
  • 14 Holland RP, Arnsdorf MR. Solid angle theory and the electrocardiogram. Physiologic and quantitative interpretations. Progr Cardiovasc Dis 1977; 19: 431-57.
  • 15 Ritsema Hvan Eck. Digital computer simulation of cardiac excitation in man (Ph. D. diss). Halifax: Halifax Univ Press; 1972
  • 16 Van Oosterom A, Huiskamp GJ. The effect of torso inhomogeneities on body surface potentials quantified using “tailored” geometry. J Electrocardiol 1989; 22: 53-72.
  • 17 Colli-Franzone P, Guerri L, Viganotti C. et al. Potential fields generated by oblique dipole layers modeling excitation wave-fronts in the anisotropic myocardium. Circ Res 1982; 51: 330-46.
  • 18 Geselowitz DB, Miller WT. A bi-domain model for anisotropic cardiac muscle. Ann Biomed Eng 1983; 11: 191-206.
  • 19 Rudy Y, Messinger-Rapport BJ. The inverse problem in electrocardiography: solutions in terms of epicardial potentials. CRC Crit Rev in Biomed Eng 1988; 1613: 215-68.
  • 20 Meijs JWH, Weier ON, Peters MJ, Van Oosterom A. On the numerical accuracy of the boundary element method. IEEE Trans Biomed Eng 1989; 36: 1038-49.
  • 21 Huiskamp GJ, Van Oosterom A. The depolarization sequence of the human heart surface computed from measured body surface potentials. IEEE Trans Biomed Eng 1988; 35: 1047-58.
  • 22 Cuppen JJM, Van Oosterom A. Model studies with the inversely calculated iso-chrones of ventricular depolarization. IEEE Trans Biomed Eng 1984; 31: 652-9.
  • 23 Beck JV, Arnold KJ. Parameter Estimation in Engineering and Science. New York: Wiley; 1977
  • 24 Lawson CL, Hanson RC. Solving Least Squares Problems. Englewood Cliffs NJ: Prentice-Hall; 1974
  • 25 Oostendorp TF, Van Oosterom A. Source parameter estimation in inhomogeneous volume conductors of arbitrary shape. IEEE Trans Biomed Eng 1989; 36: 382-91.
  • 26 Van Oosterom A, Oostendorp TF, Huiskamp GJ, Ter HJMBrake. The mag-netocardiogram derived from electrocardiographic data. Circ Res. 1990 (acc. for publication).
  • 27 Huiskamp GJ, Van Oosterom A. Tailored versus realistic geometry in the inverse problem of electrocardiography. IEEE Trans Biomed Eng 1989; 36: 827-35.