Methods Inf Med 1990; 29(03): 200-204
DOI: 10.1055/s-0038-1634783
Statistical Analysis
Schattauer GmbH

Cluster Analysis of Antigenic Profiles of Tumors: Selection of Number of Clusters Using Akaike’s Information Criterion[*]

J. A. Koziol
1   Department of Molecular and Experimental Medicine, Research Institute of Scripps Clinic, La Jolla,CA, U.S.A
› Author Affiliations
Further Information

Publication History

Publication Date:
07 February 2018 (online)

Abstract

A basic problem of cluster analysis is the determination or selection of the number of clusters evinced in any set of data. We address this issue with multinomial data using Akaike’s information criterion and demonstrate its utility in identifying an appropriate number of clusters of tumor types with similar profiles of cell surface antigens.

* This research is supported in part by a grant from the National Cancer Institute and an award from the Alexander von Humboldt Foundation.


 
  • REFERENCES

  • 1 Robb JA. Diagnostic immunohistochemistry of epithelial neoplasms: practical aspects of technique and interpretation. J Clin Labor Anal 1987; 01: 116-23.
  • 2 Anderberg MR. Cluster Analysis for Applications. New York: Academic Press; 1973
  • 3 Everitt BS. Unresolved problems in cluster analysis. Biometrics 1979; 35: 169-81.
  • 4 Everitt BS. Cluster Analysis. 2nd Ed).. London: Heineman; 1980
  • 5 Akaike H. Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F. eds. Second International Symposium on Information Theory. Budapest: Akademiai Kiado; 1973: 267-81.
  • 6 Akaike H. A new look at the statistical model identification. IEEE Trans Autom Control 1974; AC-19: 716-23.
  • 7 Kullback S. Information Theory and Statistics. New York: Dover; 1968
  • 8 Akaike H. On entropy maximization principle. In: Krishnaiah PR. ed. Applications of Statistics. Amsterdam: North-Holland Publ Comp; 1977: 27-41.
  • 9 Akaike H. Statistical inference and measurement of entropy. In: Box GEP, Leonard T, Wu CF. eds. Scientific Inference, Data Analysis, and Robustness. New York: Academic Press; 1983: 165-89.
  • 10 Akaike H. Information measures and model selection. Proc Intl Stat Inst 1983; 01: 277-91.
  • 11 Williams WT, Lambert JM, Lance GN. Multivariate methods in plant ecology. V: Similarity analyses and information analysis. J Ecol 1966; 54: 427-45.
  • 12 Orloci L. Information analysis in phytosociology: partition, classification and prediction. J Theor Biol 1968; 20: 271-84.
  • 13 Orloci L. Information analysis of structure in biological collections. Nature 1969; 223: 483-84.
  • 14 Orloci L. Information theory models for hierarchic and non-hierarchic classifications. In: Cole AJ. ed. Numerical Taxonomy. London: Academic Press; 1969: 148-64.