Methods Inf Med 2001; 40(03): 170-177
DOI: 10.1055/s-0038-1634165
Original Article
Schattauer GmbH

3D-VIEWER: An Atlas-Based System for Individual and Statistical Investigations of the Human Brain

G. Berks
1   Institute of Anatomy, University of Technology (RWTH), Aachen, Germany
,
G. Pohl
1   Institute of Anatomy, University of Technology (RWTH), Aachen, Germany
,
D. Graf v. Keyserlingk
1   Institute of Anatomy, University of Technology (RWTH), Aachen, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
07 February 2018 (online)

Abstract:

3D-VIEWER is a new software tool for neurosurgical planning and population studies. It is based on digitized three-dimensional brain atlases derived from standard stereotactic atlases that can be adapted to an individual’s brain and shown as a series of displayed images. If the patient’s brain has been imaged in different modalities, the standardized anatomical information can be adapted to the individual images, which will bring the images into registration. The 3D-VIEWER can be used as a tool for combining multimodal information from the same patient. In addition, several tools are available that allow oblique views of anatomical structures or the view along the intended trajectory during a neurosurgical intervention. Furthermore, using the atlas transformation matrices, anatomical information can be determined when comparing an individual’s brain to the anatomy of the atlas brain. Thus, standardized anatomical information from the atlas can be introduced into individual images. This standardization is used to perform individual-group and group-by-group comparisons between patients and normal controls in anatomical studies.

 
  • REFERENCES

  • 1 Fox PT, Perlmutter JS, Raichle ME. A stereotactic method of anatomical localization for positron emission tomography. J Comput Assist Tomogr 1985; 9: 141-53.
  • 2 Pelizzari CA, Chen GTY, Spelbring DR. et al. Accurate three-dimensional registration of CT, PET, and/or MR images of the brain. J Comput Assist Tomogr 1989; 13: 20-6.
  • 3 Nowinski WL, Fang A, Nguyen BT. et al. Multiple brain atlas database and atlas-based neuroimaging system. Comput Aided Surg 1997; 2: 42-66.
  • 4 Frackowiak RSJ, Friston KJ. Functional neuroanatomy of the human brain: positron emission tomography – a new neuroanatomical technique. J Anat 1994; 184: 211-25.
  • 5 Pfefferbaum A, Marsh L. Structural brain imaging in schizophrenia. Clin Neurosci 1995; 3: 105-11.
  • 6 Collins DL, Neelin P, Peters TM. et al. Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 1994; 18: 192-205.
  • 7 Schmahmann JD, Doyon J, McDonald D. et al. Three-dimensional MRI atlas of the human cerebellum in proportional stereo-taxic space. Neuroimage 1999; 10: 233-60.
  • 8 Van den Elsen P, Pol E, Viergever MA. Medical image matching – a review with classification. IEEE Eng Med Biol 1993; 12: 26-39.
  • 9 Maintz JBA, Viergever MA. A survey of medical image registration. Med Image Anal 1998; 2: 1-36.
  • 10 Bohm C, Greitz T, Kingsley D. et al. Adjustable computerized stereotaxic brain atlas for transmission and emission tomography. Am J Neuroradiol 1983; 4: 731-3.
  • 11 Evans AC, Beil C, Marett S. et al. Anatomical-functional correlation using an adjustable MRI-based region of interest atlas with positron emission tomography. J Cereb Blood Flow Metab 1988; 8: 513-30.
  • 12 Greitz T, Bohm C, Holte S. et al. A computerized brain atlas: construction, anatomical content and some applications. J Comput Assist Tomogr 1991; 15: 26-38.
  • 13 Gee JC, Reivich M, Bajcsy R. Elastically deforming 3D atlas to match anatomical brain images. J Comput Assist Tomogr 1993; 17: 225-36.
  • 14 Davatzikos C, Prince JL, Bryan RN. Image registration based on boundary mapping. IEEE Trans Med Imaging 1996; 15: 112-5.
  • 15 Talairach J, Tournoux P. Co-planar Stereo-taxic Atlas of the Human Brain. Stuttgart/ New York: Thieme; 1988
  • 16 Miller MI, Christensen GE, Amit Y. et al. Mathematical textbook of deformable neuroanatomies. Proc Natl Acad Sci USA. 1993: 90.
  • 17 Christensen GE, Joshi SC, Miller MI. Volu-metric transformation of brain anatomy. IEEE Trans Med Imaging 1997; 16: 864-77.
  • 18 Sandor S, Leahy R. Surface-based labeling of cortical anatomy using a deformable atlas. IEEE Trans Med Imaging 1997; 16: 41-54.
  • 19 Woods RP, Mazziotta JC, Cherry SR. MRIPET registration with automated algorithm. J Comput Assist Tomogr 1993; 17: 536-46.
  • 20 Woods RP, Grafton ST, Watson JDG. et al. Automated image registration: II. Intersubject validation of linear and nonlinear models. J Comput Assist Tomogr 1998; 22: 153-65.
  • 21 Keyserlingk DGv, Niemann K, Wasel J. A quantitative approach to spatial variation of human cerebral sulci. Acta Anat (Basel) 1988; 131: 127-31.
  • 22 Woods RP, Dapretto M, Sicotte NL. et al. Creation and use of a Talairach-compatible atlas for accurate, automated, nonlinear intersubject registration, and analysis of functional imaging data. Hum Brain Mapp 1999; 8: 73-9.
  • 23 Thurfjell L, Bohm C. Atlas generated generalized ROIs for use in functional neuroimaging. IEEE Trans Nucl Sci 1994; 41: 1670-7.
  • 24 Royackkers N, Desvignes M, Fawal H. et al. Detection and statistical analysis of human cortical sulci. Neuroimage 1999; 10: 625-41.
  • 25 West J, Fitzpatrick JM, Wang MY. et al. Comparison and evaluation of retrospective intermodality brain image registration techniques. J Comput Assist Tomogr 1997; 21: 554-66.
  • 26 Brodmann K. Vergleichende Lokalisationslehre der Großhirnrinde. Leipzig: Barth; 1909
  • 27 Niemann K, Pohl G, Berks G. et al. The Schaltenbrand and Wahren stereotaxic atlas: experiences with a 3D-MRI navigation system. In: Proceedings of the First International Conference on Functional Mapping of the Human Brain. Hum Brain Mapp Supplement 1995; 1: 73.
  • 28 Niemann K, van den Boom R, Haeselbarth K. et al. A brainstem stereotactic atlas in a three-dimensional magnetic resonance imaging navigation system: first experiences with atlas-to-patient registration. J Neurosurg 1999; 90: 891-901.
  • 29 Berks G, Ghassemi A, Keyserlingk DGv. Spatial registration of digital brain atlases based on fuzzy set theory. Comput Med Imaging Graph 2001; 25: 1-10.
  • 30 Worsley KJ, Evans AC, Marrett S. et al. A three-dimensional statistical analysis for CBF activation studies in human brain. J Cereb Blood Flow Metab 1992; 12: 900-18.
  • 31 Missimer J, Knorr U, Maguire RP. et al. On two methods of statistical image analysis. Hum Brain Mapp 1999; 8: 245-58.
  • 32 Wong JCH, Studholme C, Hawkes DJ. et al. Evaluation of the limits of visual detection of image misregistration in a brain fluorine-18 fluorodeoxyglucose PET-MRI study. Eur J Nucl Med 1997; 24: 642-50.
  • 33 Little JA, Hawkes DJ. The registration of multiple medical images acquired from a single subject: why, how, what next?. Stat Methods Med Res 1997; 6: 239-65.