Semin Respir Crit Care Med 2018; 39(01): 045-055
DOI: 10.1055/s-0037-1617412
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Respiratory Viruses and Asthma

Peter A. B. Wark
1   Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
2   Department of Respiratory and Sleep Medicine, John Hunter Hospital, New South Wales, Australia
,
James Michael Ramsahai
1   Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
2   Department of Respiratory and Sleep Medicine, John Hunter Hospital, New South Wales, Australia
,
Prabuddha Pathinayake
1   Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
2   Department of Respiratory and Sleep Medicine, John Hunter Hospital, New South Wales, Australia
,
Bilal Malik
1   Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
,
Nathan W. Bartlett
1   Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
3   School of Biomedical Sciences, The University of Newcastle, New South Wales, Australia
› Author Affiliations
Further Information

Publication History

Publication Date:
10 February 2018 (online)

Abstract

Asthma remains the most prevalent chronic respiratory disorder, affecting people of all ages. The relationship between respiratory virus infection and asthma has long been recognized, though remains incompletely understood. In this article, we will address key issues around this relationship. These will include the crucial role virus infection plays in early life, as a potential risk factor for the development of asthma and lung disease. We will assess the impact that virus infection has on those with established asthma as a trigger for acute disease and how this may influence asthma throughout life. Finally, we will explore the complex interaction that occurs between the airway and the immune responses that make those with asthma so susceptible to the effects of virus infection.

 
  • References

  • 1 Hall CB, Weinberg GA, Iwane MK. , et al. The burden of respiratory syncytial virus infection in young children. N Engl J Med 2009; 360 (06) 588-598
  • 2 Meissner HC. Viral bronchiolitis in children. N Engl J Med 2016; 374 (18) 1793-1794
  • 3 Carroll KN, Wu P, Gebretsadik T. , et al. Season of infant bronchiolitis and estimates of subsequent risk and burden of early childhood asthma. J Allergy Clin Immunol 2009; 123 (04) 964-966
  • 4 Lu S, Hartert TV, Everard ML. , et al. Predictors of asthma following severe respiratory syncytial virus (RSV) bronchiolitis in early childhood. Pediatr Pulmonol 2016; 51 (12) 1382-1392
  • 5 Stensballe LG, Simonsen JB, Thomsen SF. , et al. The causal direction in the association between respiratory syncytial virus hospitalization and asthma. J Allergy Clin Immunol 2009; 123 (01) 131-137.e1
  • 6 Lemanske Jr RF, Jackson DJ, Gangnon RE. , et al. Rhinovirus illnesses during infancy predict subsequent childhood wheezing. J Allergy Clin Immunol 2005; 116 (03) 571-577
  • 7 Conickx G, Mestdagh P, Avila Cobos F. , et al. MicroRNA profiling reveals a role for microRNA-218-5p in the pathogenesis of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2017; 195 (01) 43-56
  • 8 Turunen R, Koistinen A, Vuorinen T. , et al. The first wheezing episode: respiratory virus etiology, atopic characteristics, and illness severity. Pediatr Allergy Immunol 2014; 25 (08) 796-803
  • 9 Palmenberg AC, Gern JE. Classification and evolution of human rhinoviruses. Methods Mol Biol 2015; 1221: 1-10
  • 10 Lee WM, Lemanske Jr RF, Evans MD. , et al. Human rhinovirus species and season of infection determine illness severity. Am J Respir Crit Care Med 2012; 186 (09) 886-891
  • 11 Miller EK, Williams JV, Gebretsadik T. , et al. Host and viral factors associated with severity of human rhinovirus-associated infant respiratory tract illness. J Allergy Clin Immunol 2011; 127 (04) 883-891
  • 12 Bizzintino J, Lee WM, Laing IA. , et al. Association between human rhinovirus C and severity of acute asthma in children. Eur Respir J 2011; 37 (05) 1037-1042
  • 13 Arden KE, McErlean P, Nissen MD, Sloots TP, Mackay IM. Frequent detection of human rhinoviruses, paramyxoviruses, coronaviruses, and bocavirus during acute respiratory tract infections. J Med Virol 2006; 78 (09) 1232-1240
  • 14 Bochkov YA, Watters K, Ashraf S. , et al. Cadherin-related family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C binding and replication. Proc Natl Acad Sci U S A 2015; 112 (17) 5485-5490
  • 15 Husby A, Pasanen A, Waage J. , et al. CDHR3 gene variation and childhood bronchiolitis. J Allergy Clin Immunol 2017; 140 (05) 1469-1471.e7
  • 16 Bønnelykke K, Sleiman P, Nielsen K. , et al. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations. Nat Genet 2014; 46 (01) 51-55
  • 17 Simpson A, Tan VY, Winn J. , et al. Beyond atopy: multiple patterns of sensitization in relation to asthma in a birth cohort study. Am J Respir Crit Care Med 2010; 181 (11) 1200-1206
  • 18 Jackson DJ, Gangnon RE, Evans MD. , et al. Wheezing rhinovirus illnesses in early life predict asthma development in high-risk children. Am J Respir Crit Care Med 2008; 178 (07) 667-672
  • 19 Jackson DJ, Evans MD, Gangnon RE. , et al. Evidence for a causal relationship between allergic sensitization and rhinovirus wheezing in early life. Am J Respir Crit Care Med 2012; 185 (03) 281-285
  • 20 Liu L, Pan Y, Zhu Y. , et al. Association between rhinovirus wheezing illness and the development of childhood asthma: a meta-analysis. BMJ Open 2017; 7 (04) e013034
  • 21 Gern JE, Busse WW. Relationship of viral infections to wheezing illnesses and asthma. Nat Rev Immunol 2002; 2 (02) 132-138
  • 22 Top Jr FH, Connor EM, Carlin DA. Prophylaxis against respiratory syncytial virus in premature infants. IMpact-RSV Study Group. Lancet 2000; 355 (9208): 1014
  • 23 Blanken MO, Rovers MM, Molenaar JM. , et al; Dutch RSV Neonatal Network. Respiratory syncytial virus and recurrent wheeze in healthy preterm infants. N Engl J Med 2013; 368 (19) 1791-1799
  • 24 Mochizuki H, Kusuda S, Okada K, Yoshihara S, Furuya H, Simões EAF. ; Scientific Committee for Elucidation of Infantile Asthma. Palivizumab prophylaxis in preterm infants and subsequent recurrent wheezing. Six-year follow-up study. Am J Respir Crit Care Med 2017; 196 (01) 29-38
  • 25 Huang YJ, Charlson ES, Collman RG, Colombini-Hatch S, Martinez FD, Senior RM. The role of the lung microbiome in health and disease. A National Heart, Lung, and Blood Institute workshop report. Am J Respir Crit Care Med 2013; 187 (12) 1382-1387
  • 26 Bisgaard H, Hermansen MN, Bønnelykke K. , et al. Association of bacteria and viruses with wheezy episodes in young children: prospective birth cohort study. BMJ 2010; 341: c4978
  • 27 Teo SM, Mok D, Pham K. , et al. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe 2015; 17 (05) 704-715
  • 28 Kabesch M, Lauener RP. Why Old McDonald had a farm but no allergies: genes, environments, and the hygiene hypothesis. J Leukoc Biol 2004; 75 (03) 383-387
  • 29 Strachan DP. Hay fever, hygiene, and household size. BMJ 1989; 299 (6710): 1259-1260
  • 30 West MA, Heagy W. Endotoxin tolerance: a review. Crit Care Med 2002; 30: S64-S73
  • 31 Braun-Fahrländer C, Riedler J, Herz U. , et al; Allergy and Endotoxin Study Team. Environmental exposure to endotoxin and its relation to asthma in school-age children. N Engl J Med 2002; 347 (12) 869-877
  • 32 Liu AH. Revisiting the hygiene hypothesis for allergy and asthma. J Allergy Clin Immunol 2015; 136 (04) 860-865
  • 33 Schuijs MJ, Willart MA, Vergote K. , et al. Farm dust and endotoxin protect against allergy through A20 induction in lung epithelial cells. Science 2015; 349 (6252): 1106-1110
  • 34 Shembade N, Parvatiyar K, Harhaj NS, Harhaj EW. The ubiquitin-editing enzyme A20 requires RNF11 to downregulate NF-kappaB signalling. EMBO J 2009; 28 (05) 513-522
  • 35 Parvatiyar K, Barber GN, Harhaj EW. TAX1BP1 and A20 inhibit antiviral signaling by targeting TBK1-IKKi kinases. J Biol Chem 2010; 285 (20) 14999-15009
  • 36 Kang NI, Yoon HY, Lee YR. , et al. A20 attenuates allergic airway inflammation in mice. J Immunol 2009; 183 (02) 1488-1495
  • 37 Kelly C, Shields MD, Elborn JS, Schock BC. A20 regulation of nuclear factor-κB: perspectives for inflammatory lung disease. Am J Respir Cell Mol Biol 2011; 44 (06) 743-748
  • 38 Lu Y, Li Y, Xu L, Xia M, Cao L. Bacterial lysate increases the percentage of natural killer T cells in peripheral blood and alleviates asthma in children. Pharmacology 2015; 95 (3-4): 139-144
  • 39 Razi CH, Harmancı K, Abacı A. , et al. The immunostimulant OM-85 BV prevents wheezing attacks in preschool children. J Allergy Clin Immunol 2010; 126 (04) 763-769
  • 40 Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. 2017. Available at: www.ginasthma.org . June 2017
  • 41 Dougherty RH, Fahy JV. Acute exacerbations of asthma: epidemiology, biology and the exacerbation-prone phenotype. Clin Exp Allergy 2009; 39 (02) 193-202
  • 42 Johnston SL, Pattemore PK, Sanderson G. , et al. Community study of role of viral infections in exacerbations of asthma in 9–11 year old children. BMJ 1995; 310 (6989): 1225-1229
  • 43 Gibson PG, Grootendor DC, Henry RL. , et al. Sputum induction in children. Eur Respir J Suppl 2002; 37: 44s-46s
  • 44 See H, Wark P. Innate immune response to viral infection of the lungs. Paediatr Respir Rev 2008; 9 (04) 243-250
  • 45 Jamieson KC, Warner SM, Leigh R, Proud D. Rhinovirus in the pathogenesis and clinical course of asthma. Chest 2015; 148 (06) 1508-1516
  • 46 Matsumoto K, Inoue H. Viral infections in asthma and COPD. Respir Investig 2014; 52 (02) 92-100
  • 47 Wark PA, Johnston SL, Bucchieri F. , et al. Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. J Exp Med 2005; 201 (06) 937-947
  • 48 Sandrock CE, Norris A. Infection in severe asthma exacerbations and critical asthma syndrome. Clin Rev Allergy Immunol 2015; 48 (01) 104-113
  • 49 Wark PA, Grissell T, Davies B, See H, Gibson PG. Diversity in the bronchial epithelial cell response to infection with different rhinovirus strains. Respirology 2009; 14 (02) 180-186
  • 50 Rowe RK, Gill MA. Asthma: the interplay between viral infections and allergic diseases. Immunol Allergy Clin North Am 2015; 35 (01) 115-127
  • 51 Gavala ML, Bashir H, Gern JE. Virus/allergen interactions in asthma. Curr Allergy Asthma Rep 2013; 13 (03) 298-307
  • 52 Pastula ST, Hackett J, Coalson J. , et al. Hospitalizations for respiratory syncytial virus among adults in the United States, 1997-2012. Open Forum Infect Dis 2017; 4 (01) ofw270
  • 53 Ritchie AI, Farne HA, Singanayagam A, Jackson DJ, Mallia P, Johnston SL. Pathogenesis of viral infection in exacerbations of airway disease. Ann Am Thorac Soc 2015; 12 (Suppl. 02) S115-S132
  • 54 Corne JM, Marshall C, Smith S. , et al. Frequency, severity, and duration of rhinovirus infections in asthmatic and non-asthmatic individuals: a longitudinal cohort study. Lancet 2002; 359 (9309): 831-834
  • 55 Hewitt R, Farne H, Ritchie A, Luke E, Johnston SL, Mallia P. The role of viral infections in exacerbations of chronic obstructive pulmonary disease and asthma. Ther Adv Respir Dis 2016; 10 (02) 158-174
  • 56 Contoli M, Message SD, Laza-Stanca V. , et al. Role of deficient type III interferon-lambda production in asthma exacerbations. Nat Med 2006; 12 (09) 1023-1026
  • 57 Lopez-Souza N, Favoreto S, Wong H. , et al. In vitro susceptibility to rhinovirus infection is greater for bronchial than for nasal airway epithelial cells in human subjects. J Allergy Clin Immunol 2009; 123 (06) 1384-90.e2
  • 58 Bochkov YA, Hanson KM, Keles S, Brockman-Schneider RA, Jarjour NN, Gern JE. Rhinovirus-induced modulation of gene expression in bronchial epithelial cells from subjects with asthma. Mucosal Immunol 2010; 3 (01) 69-80
  • 59 Kupczyk M, ten Brinke A, Sterk PJ. , et al; BIOAIR investigators. Frequent exacerbators–a distinct phenotype of severe asthma. Clin Exp Allergy 2014; 44 (02) 212-221
  • 60 Edwards MR, Regamey N, Vareille M. , et al. Impaired innate interferon induction in severe therapy resistant atopic asthmatic children. Mucosal Immunol 2013; 6 (04) 797-806
  • 61 Djukanović R, Harrison T, Johnston SL. , et al; INTERCIA Study Group. The effect of inhaled IFN-β on worsening of asthma symptoms caused by viral infections. A randomized trial. Am J Respir Crit Care Med 2014; 190 (02) 145-154
  • 62 Coleman L, Laing IA, Bosco A. Rhinovirus-induced asthma exacerbations and risk populations. Curr Opin Allergy Clin Immunol 2016; 16 (02) 179-185
  • 63 Global Initiative for Asthma. Global Strategy for AsthmaManagement and Prevention. 2014. Available at: www.ginasthma.org
  • 64 Bateman ED, Buhl R, O'Byrne PM. , et al. Development and validation of a novel risk score for asthma exacerbations: the risk score for exacerbations. J Allergy Clin Immunol 2015; 135 (06) 1457-64.e4
  • 65 Jackson DJ, Trujillo-Torralbo MB, del-Rosario J. , et al. The influence of asthma control on the severity of virus-induced asthma exacerbations. J Allergy Clin Immunol 2015; 136 (02) 497-500.e3
  • 66 Bateman ED, Reddel HK, Eriksson G. , et al. Overall asthma control: the relationship between current control and future risk. J Allergy Clin Immunol 2010; 125 (03) 600-608 , 608.e1–608.e6
  • 67 Hatchwell L, Collison A, Girkin J. , et al. Toll-like receptor 7 governs interferon and inflammatory responses to rhinovirus and is suppressed by IL-5-induced lung eosinophilia. Thorax 2015; 70 (09) 854-861
  • 68 Busse WW, Morgan WJ, Gergen PJ. , et al. Randomized trial of omalizumab (anti-IgE) for asthma in inner-city children. N Engl J Med 2011; 364 (11) 1005-1015
  • 69 Teach SJ, Gill MA, Togias A. , et al. Preseasonal treatment with either omalizumab or an inhaled corticosteroid boost to prevent fall asthma exacerbations. J Allergy Clin Immunol 2015; 136 (06) 1476-1485
  • 70 Sonnenfeld G, Hudgens RW. Effect of sidestream and mainstream smoke exposure on in vitro interferon-alpha/beta production by L-929 cells. Cancer Res 1986; 46 (06) 2779-2783
  • 71 Greenberg S. Asthma exacerbations: predisposing factors and prediction rules. Curr Opin Allergy Clin Immunol 2013; 13 (03) 225-236
  • 72 Kling S, Donninger H, Williams Z. , et al. Persistence of rhinovirus RNA after asthma exacerbation in children. Clin Exp Allergy 2005; 35 (05) 672-678
  • 73 Chang AB, Clark R, Acworth JP, Petsky HL, Sloots TP. The impact of viral respiratory infection on the severity and recovery from an asthma exacerbation. Pediatr Infect Dis J 2009; 28 (04) 290-294
  • 74 Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system. Int Rev Immunol 2011; 30 (01) 16-34
  • 75 Kumagai Y, Takeuchi O, Akira S. Pathogen recognition by innate receptors. J Infect Chemother 2008; 14 (02) 86-92
  • 76 Bowie AG, Haga IR. The role of toll-like receptors in the host response to viruses. Mol Immunol 2005; 42 (08) 859-867
  • 77 Häcker H, Redecke V, Blagoev B. , et al. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 2006; 439 (7073): 204-207
  • 78 Thompson AJ, Locarnini SA. Toll-like receptors, RIG-I-like RNA helicases and the antiviral innate immune response. Immunol Cell Biol 2007; 85 (06) 435-445
  • 79 Kato H, Takeuchi O, Mikamo-Satoh E. , et al. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J Exp Med 2008; 205 (07) 1601-1610
  • 80 Seth RB, Sun L, Ea CK, Chen ZJ. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 2005; 122 (05) 669-682
  • 81 Takeuchi O, Akira S. MDA5/RIG-I and virus recognition. Curr Opin Immunol 2008; 20 (01) 17-22
  • 82 Meager A, Visvalingam K, Dilger P, Bryan D, Wadhwa M. Biological activity of interleukins-28 and -29: comparison with type I interferons. Cytokine 2005; 31 (02) 109-118
  • 83 Zhou Z, Hamming OJ, Ank N, Paludan SR, Nielsen AL, Hartmann R. Type III interferon (IFN) induces a type I IFN-like response in a restricted subset of cells through signaling pathways involving both the JAK-STAT pathway and the mitogen-activated protein kinases. J Virol 2007; 81 (14) 7749-7758
  • 84 Jones SA. Directing transition from innate to acquired immunity: defining a role for IL-6. J Immunol 2005; 175 (06) 3463-3468
  • 85 Lauder SN, Jones E, Smart K. , et al. Interleukin-6 limits influenza-induced inflammation and protects against fatal lung pathology. Eur J Immunol 2013; 43 (10) 2613-2625
  • 86 Huang FF, Barnes PF, Feng Y. , et al. GM-CSF in the lung protects against lethal influenza infection. Am J Respir Crit Care Med 2011; 184 (02) 259-268
  • 87 Neuzil KM, Tang YW, Graham BS. Protective role of TNF-alpha in respiratory syncytial virus infection in vitro and in vivo. Am J Med Sci 1996; 311 (05) 201-204
  • 88 Seo SH, Webster RG. Tumor necrosis factor alpha exerts powerful anti-influenza virus effects in lung epithelial cells. J Virol 2002; 76 (03) 1071-1076
  • 89 Mukaida N. Pathophysiological roles of interleukin-8/CXCL8 in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 2003; 284 (04) L566-L577
  • 90 Garofalo R, Sabry M, Jamaluddin M. , et al. Transcriptional activation of the interleukin-8 gene by respiratory syncytial virus infection in alveolar epithelial cells: nuclear translocation of the RelA transcription factor as a mechanism producing airway mucosal inflammation. J Virol 1996; 70 (12) 8773-8781
  • 91 Choi AM, Jacoby DB. Influenza virus A infection induces interleukin-8 gene expression in human airway epithelial cells. FEBS Lett 1992; 309 (03) 327-329
  • 92 Chun YH, Park JY, Lee H. , et al. Rhinovirus-infected epithelial cells produce more IL-8 and RANTES compared with other respiratory viruses. Allergy Asthma Immunol Res 2013; 5 (04) 216-223
  • 93 Lindell DM, Lane TE, Lukacs NW. CXCL10/CXCR3-mediated responses promote immunity to respiratory syncytial virus infection by augmenting dendritic cell and CD8(+) T cell efficacy. Eur J Immunol 2008; 38 (08) 2168-2179
  • 94 Zaheer RS, Proud D. Human rhinovirus-induced epithelial production of CXCL10 is dependent upon IFN regulatory factor-1. Am J Respir Cell Mol Biol 2010; 43 (04) 413-421
  • 95 Spurrell JC, Wiehler S, Zaheer RS, Sanders SP, Proud D. Human airway epithelial cells produce IP-10 (CXCL10) in vitro and in vivo upon rhinovirus infection. Am J Physiol Lung Cell Mol Physiol 2005; 289 (01) L85-L95
  • 96 Lam WY, Yeung AC, Chu IM, Chan PK. Profiles of cytokine and chemokine gene expression in human pulmonary epithelial cells induced by human and avian influenza viruses. Virol J 2010; 7: 344
  • 97 Culley FJ, Pennycook AM, Tregoning JS. , et al. Role of CCL5 (RANTES) in viral lung disease. J Virol 2006; 80 (16) 8151-8157
  • 98 Schall TJ, Bacon K, Toy KJ, Goeddel DV. Selective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine RANTES. Nature 1990; 347 (6294): 669-671
  • 99 Sykes A, Macintyre J, Edwards MR. , et al. Rhinovirus-induced interferon production is not deficient in well controlled asthma. Thorax 2014; 69 (03) 240-246
  • 100 Sykes A, Edwards MR, Macintyre J. , et al. TLR3, TLR4 and TLRs7-9 induced interferons are not impaired in airway and blood cells in well controlled asthma. PLoS One 2013; 8 (06) e65921
  • 101 Moriwaki A, Matsumoto K, Matsunaga Y. , et al. IL-13 suppresses double-stranded RNA-induced IFN-λ production in lung cells. Biochem Biophys Res Commun 2011; 404 (04) 922-927
  • 102 Contoli M, Ito K, Padovani A. , et al. Th2 cytokines impair innate immune responses to rhinovirus in respiratory epithelial cells. Allergy 2015; 70 (08) 910-920
  • 103 Bianco A, Sethi SK, Allen JT, Knight RA, Spiteri MA. Th2 cytokines exert a dominant influence on epithelial cell expression of the major group human rhinovirus receptor, ICAM-1. Eur Respir J 1998; 12 (03) 619-626
  • 104 Redington AE, Madden J, Frew AJ. , et al. Transforming growth factor-beta 1 in asthma. Measurement in bronchoalveolar lavage fluid. Am J Respir Crit Care Med 1997; 156 (2 Pt 1): 642-647
  • 105 Bedke N, Sammut D, Green B. , et al. Transforming growth factor-beta promotes rhinovirus replication in bronchial epithelial cells by suppressing the innate immune response. PLoS One 2012; 7 (09) e44580
  • 106 Thomas BJ, Lindsay M, Dagher H. , et al. Transforming growth factor-beta enhances rhinovirus infection by diminishing early innate responses. Am J Respir Cell Mol Biol 2009; 41 (03) 339-347
  • 107 Harada M, Nakashima K, Hirota T. , et al. Functional polymorphism in the suppressor of cytokine signaling 1 gene associated with adult asthma. Am J Respir Cell Mol Biol 2007; 36 (04) 491-496
  • 108 Seki Y, Inoue H, Nagata N. , et al. SOCS-3 regulates onset and maintenance of T(H)2-mediated allergic responses. Nat Med 2003; 9 (08) 1047-1054
  • 109 Gielen V, Sykes A, Zhu J. , et al. Increased nuclear suppressor of cytokine signaling 1 in asthmatic bronchial epithelium suppresses rhinovirus induction of innate interferons. J Allergy Clin Immunol 2015; 136 (01) 177-188.e11
  • 110 Davies JM, Carroll ML, Li H. , et al. Budesonide and formoterol reduce early innate anti-viral immune responses in vitro. PLoS One 2011; 6 (11) e27898
  • 111 Thomas BJ, Porritt RA, Hertzog PJ, Bardin PG, Tate MD. Glucocorticosteroids enhance replication of respiratory viruses: effect of adjuvant interferon. Sci Rep 2014; 4: 7176
  • 112 Jackson DJ, Makrinioti H, Rana BM. , et al. IL-33-dependent type 2 inflammation during rhinovirus-induced asthma exacerbations in vivo. Am J Respir Crit Care Med 2014; 190 (12) 1373-1382
  • 113 Beale J, Jayaraman A, Jackson DJ. , et al. Rhinovirus-induced IL-25 in asthma exacerbation drives type 2 immunity and allergic pulmonary inflammation. Sci Transl Med 2014; 6 (256) 256ra134
  • 114 Colucci F, Caligiuri MA, Di Santo JP. What does it take to make a natural killer?. Nat Rev Immunol 2003; 3 (05) 413-425
  • 115 Artis D, Spits H. The biology of innate lymphoid cells. Nature 2015; 517 (7534): 293-301
  • 116 Eberl G, Colonna M, Di Santo JP, McKenzie AN. Innate lymphoid cells. Innate lymphoid cells: a new paradigm in immunology. Science 2015; 348 (6237): aaa6566
  • 117 Camelo A, Rosignoli G, Ohne Y. , et al. IL-33, IL-25, and TSLP induce a distinct phenotypic and activation profile in human type 2 innate lymphoid cells. Blood Advances 2017; 1: 577-589
  • 118 Wilhelm C, Stockinger B. Innate lymphoid cells and type 2 (th2) mediated immune responses - pathogenic or beneficial?. Front Immunol 2011; 2: 68
  • 119 Guo L, Junttila IS, Paul WE. Cytokine-induced cytokine production by conventional and innate lymphoid cells. Trends Immunol 2012; 33 (12) 598-606
  • 120 Chang YJ, Kim HY, Albacker LA. , et al. Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nat Immunol 2011; 12 (07) 631-638
  • 121 Gorski SA, Hahn YS, Braciale TJ. Group 2 innate lymphoid cell production of IL-5 is regulated by NKT cells during influenza virus infection. PLoS Pathog 2013; 9 (09) e1003615
  • 122 Biron CA. Activation and function of natural killer cell responses during viral infections. Curr Opin Immunol 1997; 9 (01) 24-34
  • 123 Mailliard RB, Son YI, Redlinger R. , et al. Dendritic cells mediate NK cell help for Th1 and CTL responses: two-signal requirement for the induction of NK cell helper function. J Immunol 2003; 171 (05) 2366-2373
  • 124 Karimi K, Forsythe P. Natural killer cells in asthma. Front Immunol 2013; 4: 159
  • 125 Kaiko GE, Phipps S, Angkasekwinai P, Dong C, Foster PS. NK cell deficiency predisposes to viral-induced Th2-type allergic inflammation via epithelial-derived IL-25. J Immunol 2010; 185 (08) 4681-4690
  • 126 Welliver TP, Garofalo RP, Hosakote Y. , et al. Severe human lower respiratory tract illness caused by respiratory syncytial virus and influenza virus is characterized by the absence of pulmonary cytotoxic lymphocyte responses. J Infect Dis 2007; 195 (08) 1126-1136
  • 127 Stonier SW, Schluns KS. Trans-presentation: a novel mechanism regulating IL-15 delivery and responses. Immunol Lett 2010; 127 (02) 85-92
  • 128 Leavy O. Maturation and function of NK cells. Nat Rev Immunol 2012; 12 (03) 150
  • 129 Ennis FA, Meager A, Beare AS. , et al. Interferon induction and increased natural killer-cell activity in influenza infections in man. Lancet 1981; 2 (8252): 891-893
  • 130 Gazit R, Gruda R, Elboim M. , et al. Lethal influenza infection in the absence of the natural killer cell receptor gene Ncr1. Nat Immunol 2006; 7 (05) 517-523