Hamostaseologie 2006; 26(03): 247-254
DOI: 10.1055/s-0037-1617074
Original Article
Schattauer GmbH

Gen- und autologe Stammzelltherapie bei pAVK mit chronischer Extremitätenischämie

Aktueller StandGene therapy and stem cell transplantation in PAD
H. Lawall
1   Abteilung Angiologie / Diabetologie, SRH-Klinikum Karlsbad-Langensteinbach
› Author Affiliations
Further Information

Publication History

Publication Date:
22 December 2017 (online)

Zusammenfassung

Die Behandlung mittels Gentransfer exprimierten Wachstumsfaktoren und die autologe Stammzelltransplantation stimulieren die Neovaskularisation. Dies könnte ein neuer Therapieansatz zur Verbesserung der Durchblutung bei der peripheren arteriellen Verschlusserkrankung (pAVK) sein. Vorläufige Ergebnisse der überwiegend unkontrollierten klinischen Untersuchungen deuten auf positive Effekte hin. In einer ersten doppelblinden, randomisierten Untersuchung bei Patienten mit kritischer Extremitätenischämie wurde nach Applikation von FGF (fibroblast growth factor) eine Reduktion der Amputationsrate beobachtet. Wie bei der autologen Stammzelltransplantation sind noch viele Fragen offen, denn die Bestätigung der ersten Ergebnisse durch große randomisierte Studien steht aus.

Summary

Therapeutic angiogenesis is a novel promising strategy that uses angiogenic factors and stem cell transplantation to increase blood perfusion in ischaemic lower limbs. In preliminary studies short term safety and feasibility of gene therapy by recombinant protein administration or gene transfer were proven. Early reports mostly fail to show an convincing efficacy. In the largest placebo-controlled study of therapeutic angiogenesis in severe PAD reported to date, the plasmid-based fibroblast growth factor was safe and significantly reduced amputation rates. The data suggest the efficacy of the angiogenic therapy and provide the basis for further larger trials to confirm these first results.

 
  • Literatur

  • 1 Dormandy JA, Rutherford RB. Management of peripheral arterial disease (PAD). TASC Working Group. TransAtlanticInter-Society Consensus (TASC). J Vasc Surg 2000; 31: S1-296.
  • 2 BASIL Trial.. Bypass versus angioplasty in severe ischaemia of the leg (BASIL): multicentre, randomised controlled trial. Lancet 2005; 366: 1925-34.
  • 3 Isner JM, Pieczek A, Schainfeld R. et al. Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischemic limb. Lancet 1996; 348: 370-4.
  • 4 Isner JM, Asahara T. Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularisation. J Clin Invest 1999; 103: 1231-6.
  • 5 Simovic D, Isner JM, Ropper AH. et al. Improvement in chronic ischemic neuropathy after intramuscular phVEGF165 gene transfer in patients with critical limb ischemia. Arch Neurol 2001; 58: 761-8.
  • 6 Shintani S, Murohara T, Ikeda H. et al. Augmentation of postnatal neovascularisation with autologous bone marrow transplantation. Circulation 2001; 103: 897-903.
  • 7 Kawamoto A, Gwon HC, Iwaguro H. et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 2001; 103: 634-7.
  • 8 Strauer BE, Brehm M, Zeus T. et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantations in humans. Circulation 2002; 106: 1913-8.
  • 9 Higashi Y, Kimura M, Hara K. et al. Autologous bone-marrow mononuclear cell implantation improves endothelium-dependent vasodilatation in patients with limb ischemia. Circulation 2004; 109: 1215-8.
  • 10 Isner JM, Vale P, Symes J. et al. Angiogenesis and cardiovascular disease. Cardiovasc Med 2001; 6: 145-66.
  • 11 Rissanen TT, Vajanto I, Yla-Herttuala S. Gene therapy for therapeutic angiogenesis in critically ischaemic lower limb – on the way to the clinic. Eur J Clin Invest 2001; 31: 651-66.
  • 12 Ferrara N, Alitalo K. Clinical implications of angigenic growth factors and their inhibitors. Nat Med 1999; 5: 1359-64.
  • 13 Lee SH, Wolf PL, Escudero R. et al. Earl expression of angiogenesis factors in acute myocardial ischemia and infarction. N Eng J Med 2000; 342: 626-33.
  • 14 Takeshita S, Zheng LP, Brogi E. et al. Therapeutic angiogenesis: a single intra-arterial bolus of vascular endothelial growth factor augments revascularisation in a rabbit ischemic hindlimb model. J Clin Invest 1994; 93: 662-70.
  • 15 Isner JM, Pieczek A, Schainfeld R. et al. Clinical evidence of angiogenesis following arterial gene transfer of phVEGF165. Lancet 1994; 348: 370-4.
  • 16 Tsurumi Y, Takeshita S, Chen D. et al. Direct intramuscular gene transfer of naked DNA encoding vascular endothelial growth factor augments collateral development and tissue perfusion. Circulation 1996; 94: 3281-90.
  • 17 Baumgartner I, Pieczek A, Manor O. et al. Constitutive expression of phVEGF 165 following intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation 1998; 97: 1114-23.
  • 18 Isner JM, Baumgartner I, Rauh G. et al. Treatment of thrombangiitis obliterans by intramuscular gene transfer of vascular endothelial growth factor: preliminary clinical results. J Vasc Surg 1998; 28: 964-75.
  • 19 Mohler ER, Rajagopalan S, Olin JW. et al. Adenoviral- mediated gene transfer of vascular endothelial growth factor in critical limb ischemia: safety results from a phase I trial. Vasc Med 2003; 8: 9-13.
  • 20 Morishita R, Aoki M, Hashiya N. et al. Safety evaluation of clinical gene therapy using hepatocyte growth factor to treat peripheral arterial disease. Hypertension 2004; 44: 203-9.
  • 21 Rajagopalan S, Mohler ER, Lederman RJ. et al. Regional angiogenesis with vascular endothelial growth factor in peripheral arterial disease: a phase II randomised, double-blind, controlled study of adenoviral delivery of vascular endothelial growth factor 121 in patients with disabling intermittent claudication. Circulation 2003; 108: 1933-8.
  • 22 Lederman RJ, Mendelsohn FO, Anderson RD. et al. Therapeutic angiogenesis with recombinant fibroblast growth factor – 2 for intermittent claudication (the TRAFFIC study): a randomised trial. Lancet 2002; 359: 2053-8.
  • 23 Comerota AJ, Throm RC, Miller KA. et al. Naked plasmid DNA encoding fibroblast groth factor type 1 for the treatment of end-stage unreconstructible lower extremity ischemia: preliminary results of a phase I trial. J Vasc Surg 2002; 35: 930-6.
  • 24 Tateishi-Yuyama E, Matsubara H. et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 2002; 360: 427-35.
  • 25 Bartsch T, Brehm M, Falke T. et al. Schnelle Abheilung eines therapierefraktären diabetischen Fußes nach autologer Knochenmarkstammzelltransplantation. Med Klin 2005; 100: 676-80.
  • 26 Bartsch T, Falke T, Brehm M. et al. Intraarterielle und intramuskuläre Transplantation adulter, autologer Knochenmarkstammzellen. Neue Therapie bei therapierefraktärer peripherer arterieller Verschlusskrankheit. Dtsch Med Wschr 2006; 131: 79-83.
  • 27 Amann B, Lüdemann C, Stumm M. et al. Autologe Knochenmarkstransplantation zur Induktion der Angiogenese bei kritischer Extremitätenischämie. VASA. 2005 34: Suppl 67.
  • 28 Tan PH, Shao-An X, Maununta M. et al. Effect of vectors on human endothelial cell signal transduction. Implications for cardiovascular gene therapy. Arterioscler Thromb Vasc Biol 2006; 26: 462-7.