Nuklearmedizin 2007; 46(01): 43-48
DOI: 10.1055/s-0037-1616625
Original Article
Schattauer GmbH

Anatomical accuracy of interactive and automated rigid registration between X-ray CT and FDG-PET

Anatomische Genauigkeit der interaktiven und automatischen rigiden Registrierung zwischen Röntgen-CT und FDG-PE
G. Wolz
1   Clinic of Nuclear Medicine (Prof. Dr. T. Kuwert), Erlangen, Germany
,
A. Nömayr
1   Clinic of Nuclear Medicine (Prof. Dr. T. Kuwert), Erlangen, Germany
,
T. Hothorn
2   Department of Medical Informatics, Biometry and Epidemiology (Prof. Dr. O. Gefeller), Erlangen, Germany
,
J. Hornegger
3   Chair of Pattern Recognition (Prof. Dr. J. Hornegger), Erlangen, Germany
,
W. Römer
1   Clinic of Nuclear Medicine (Prof. Dr. T. Kuwert), Erlangen, Germany
,
W. Bautz
4   Institute of Radiology (Prof. Dr. W. Bautz) University of Erlangen/Nürnberg, Erlangen, Germany
,
T. Kuwert
1   Clinic of Nuclear Medicine (Prof. Dr. T. Kuwert), Erlangen, Germany
› Author Affiliations
Further Information

Publication History

Received: 12 July 2006

accepted in revised form: 18 September 2006

Publication Date:
08 January 2018 (online)

Summary

Aim: Comparison of anatomical accuracy of softwarebased interactive (IRR) and automated rigid registration (ARR) of separately acquired CT and FDG-PET data sets. Patients, methods: Independently acquired PET and helical CT data from 22 tumour patients were registered manually using the Syngo advanced Fusion VC20H tool. IRR was performed separately for the thorax and the abdomen using physiological FDG uptake in several organs as a reference. In addition, ARR was performed with the commercially available software tool Mirada 7D on all of the patients. For both methods, the distances between the representation of 53 malignant lesions on PET and CT were measured in X-, Y-, and Z-direction with reference to a common coordinate system (X-, Y-, Z-distances). Results: The percentage of lesions misregistered by less than 1.5 cm was in X-direction 91% for IRR and 89% for ARR; in Y-direction 85% and 68%; in Z-direction 72% and 51%, respectively. The average X-, Y- and Z-distances for IRR ranged from 0.58 ± 0.55 cm (X-direction) to 1.17 ± 1.66 cm (Z-direction). For ARR, the average X-, Y- and Z-distances varied between 0.66 ± 0.61 cm (X-direction) and 1.81 ± 1.37 cm (Z-direction). Mixed effects analysis of the absolute X-, Y- and Z-distances revealed a significantly better alignment for IRR compared to ARR in Z-direction (p <0.01). Lesion size and localization either in thorax or abdomen had no significant influence on the accuracy of registration. Conclusion: For the majority of malignant lesions, manual image registration with the possibility to separately align different body segments was more accurate than the automated approach. Current software for ARR does not reach the anatomical accuracy reported for PET/ CT hybrid scanners.

Zusammenfassung

Ziel: Vergleich zwischen interaktiver manueller und automatischer Software-basierter starrer Registrierung von 18F-Deoxyglukose-Positronenemissionstomographien (FDG-PET) und Röntgencomputertomographien (CT) des Körperstammes. Patienten, Methoden: Bei 22 onkologischen Patienten wurden innerhalb von vier Wochen eine Ganzkörper FDG-PET und ein Spiral-CT gemäß klinischen Standardprotokollen ohne Harmonisierung von Patientenpositionierung und -atmung aufgenommen. Die Bilddaten wurden manuell auf einer Syngo-Workstation fusioniert (IRR). Des Weiteren erfolgte ihre Registrierung mit der automatischen starren Registrierungssoftware Mirada Fusion 7D (ARR). Die Qualität der Fusion wurde durch Messung der Distanzen zwischen visuell bestimmten Läsionsmittelpunkten von 53 neoplastischen Foci in drei Raumebenen evaluiert. Ergebnisse: Eine Fehlregistrierung von weniger als 1,5 cm wurde bei 91% (X-Richtung), 85% (Y-Richtung) und 72% (Z-Richtung) der Läsionen für die IRR ermittelt. Die entsprechenden Häufigkeiten für ARR waren 89% (X-Richtung), 68% (Y-Richtung) und 51% (Z-Richtung). Die durchschnittliche Fehlregistrierung reichte für IRR von 0,58 ± 0,55 cm (X-Richtung) bis 1,17 ± 1,66 cm (Z-Richtung). Für ARR variierten die durchschnittlichen Abstände der Läsionen von 0,66 ± 0,61 cm (X-Richtung) bis 1,81 ± 1,37 cm (Z-Richtung). Die statistische Analyse ergab eine signifikant schlechtere Registrierung durch ARR in Z-Richtung. Die Lage und Größe der Läsionen hatte keinen signifikanten Einfluss auf das Ausmaß der Fehlregistrierung. Schlussfolgerung: IRR war anatomisch genauer als ARR. Beide Verfahren erreichen für klinische Routinebilddaten nicht die anatomische Genauigkeit, wie sie in der Literatur für die Registrierung durch PET/CT-Hybridkameras berichtet wurde.

 
  • References

  • 1 Allen-Auerbach M, Quon A, Weber WA. et al. Comparison between 2-deoxy-2-18F-fluoro- D-glucose positron emission tomography/computed tomography hardware fusion for staging of patients with lymphoma. Mol Imaging Biol 2004; 6: 411-6.
  • 2 Aquino SL, Asmuth JC, Alpert NM. et al. Improved radiologic staging of lung cancer with 2-18F-fluoro-2-deoxy-D-glucose-positron emission tomography and computed tomography registration. J Comput Assist Tomogr 2003; 27: 479-84.
  • 3 Bates M, Sakar D. lme4: Linear mixed-effects models using S4 classes. R package version 0.995-2. 2006 http://CRAN.R-project.org.
  • 4 Cai J, Chu JC, Recine D. et al. CT and PET lung image registration and fusion in radiotherapy treatment planning using the chamfer-matching method. Int J Radiat Oncol Biol Phys 1999; 43: 883-91.
  • 5 D'amico TA, Wong TZ, Harpole DH. et al. Impact of computed tomography-positron emission tomography fusion in staging patients with thoracic malignancies. Ann Thorac Surg 2002; 74: 160-3.
  • 6 Gutter C, Xu C, Sauer F. et al. Non- rigid multimodal image registration using Kullback- Leibler divergence MICCAI '05: Proceedings of the 8th International Conference on Medical Image Computing and Computer Assisted Intervention, Part II. Heidelberg: Springer; 2005. 3750 255-62.
  • 7 Halpern BS, Schiepers C, Weber WA. et al. Presur- gical staging of non-small cell lung cancer: positron emission tomography, integrated positron emission tomography/CT, and software image fusion. Chest 2005; 128: 2289-97.
  • 8 Han J, Berkels B, Rumpf M. et al. A variational framework for joint image registration, denoising and edge detection Bildverarbeitung für die Medizin 2006. Heidelberg: Springer; 2006: 246-50.
  • 9 Hany TF, Steinert HC, Goerres GW. et al. PET Diagnostic accuracy: improvement with in-Line PET-CT system: Initial results. Radiology 2002; 225: 575-81.
  • 10 Herzog H, Tellmann L, Hocke C. et al. NEMA NU2-2001 guided performance evaluation of four Siemens ECAT PET-Scanners, IEEE Trans. Nucl Sci 2004; 51: 2662-9.
  • 11 Hutton BF, Braun M, Thurfjell L. et al. Image registration: an essential tool for nuclear medicine. Eur J Nucl Med Mol Imaging 2002; 29: 559-77.
  • 12 Inagaki H, Kato T, Tadokoro M. et al. Interactive fusion of three-dimensional images of upper abdominal CT and FDG PET with no body surface markers. RadiatMed 1999; 17: 155-63.
  • 13 Jäger F, Han J, Hornegger J. et al. Avariationalap- proach to spatially dependent non-rigid registration. Proc SPIE 2006; 6144: 860-9.
  • 14 Kim JH, Czernin J, Allen-Auerbach MS. et al. Comparison between 18F-FDG PET, in-line PET/ CT, and software fusion for restaging of recurrent colorectal cancer. J Nucl Med 2005; 46: 587-95.
  • 15 Krishnasetty V, Fischman AJ, Halpern EL. et al. Comparison of alignment of computer-registered data sets: combined PET/CT versus independent PET and CT of the thorax. Radiology 2005; 237: 635-9.
  • 16 Lardinois D, Weder W, Hany TF. et al. Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography. N Engl J Med 2003; 348: 2500-7.
  • 17 Lavely WC, Scarfone C, Cevikalp H. et al. Phantom validation of coregistration of PET and CT for image-guided radiotherapy. Med Phys 2004; 31: 1083-92.
  • 18 Lemke AJ, Niehues SM, Hosten N. et al. Retrospective digital fusion of multidetector CT and 18F-FDG PET: clinical value in pancreatic lesions - a prospective study with 104 patients. J Nucl Med 2004; 45: 1279-86.
  • 19 Magnani P, Carretta A, Rizzo G. et al. FDG/PET and spiral CT image fusion for medistinal lymph node assessment ofnon-small cell lung cancer patients. J Cardiovasc Surg 1999; 40: 741-8.
  • 20 Nakamoto Y, Sakamoto S, Okada T. et al. Accuracy of image fusion using a fixation device for whole- body cancer imaging. AJR Am J Roentgenol 2005; 184: 1960-6.
  • 21 Nömayr A, Römer W, Hothorn T. et al. Anatomical accuracy of lesion localization: retrospective interactive rigid image registration between 18F-FDG-PET and X-ray CT. Nuklearmedizin 2005; 44: 149-55.
  • 22 Pinheiro JC, Bates M. Mixed-Effects Models in S and S-PLUS. New York: Springer; 2000
  • 23 R Development CoreTeam. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for statistical Computing; 2006. www. R-project.org.
  • 24 Reinartz P, Wieres FJ, Schneider W. et al. Side-by- side reading of PET and CT scans in oncology: which patients might profit from integrated PET/ CT?. Eur J Nucl Med Mol Imaging 2004; 31: 1456-61.
  • 25 Reske SN, Kotzerke J. FDG-PET for clinical use. Results of the 3rd German Interdisciplinary Consensus Conference, "Onko- PET III", 21 July and 19 September 2000. Eur J Nucl Med 2001; 28: 1707-23.
  • 26 Rizzo G, Castiglioni I, Arienti R. et al. Automatic registration of PET and CT studies for clinical use in thoracic and abdominal conformal radiotherapy. QJ Nucl Med Mol Imaging 2005; 49: 267-79.
  • 27 Römer W, Fiedler E, Pavel M. et al. Attenuation correction of SPECT images based on separately performed CT: effect on the measurement of regional uptake values. Nuklearmedizin 2005; 44: 20-8.
  • 28 Römer W, Nömayr A, Greess H. et al. Retrospective interactive rigid fusion of 18F-FDG-PET and CT: additional diagnostic information in melanoma patients. Nuklearmedizin 2006; 45: 88-95.
  • 29 Scarfone C, Lavely WC, Cmelak AJ. et al. Prospective feasibility trial of radiotherapy target definition for head and neck cancer using 3-dimen- sional PET and CT imaging. J Nucl Med 2004; 45: 543-52.
  • 30 Schaffler GJ, Groell R, Schoellnast H. et al. Digital image fusion of CT and PET data sets-clinical value in abdominal/pelvic malignancies. J Com- put Assist Tomogr 2000; 24: 644-7.
  • 31 Van Dalen JA, Vogel W, Huisman HJ. et al. Accuracy of rigid CT-FDG-PET image registration of the liver. Phys Med Biol 2004; 49: 5393-405.
  • 32 Vansteenkiste JF, Mortelmans LA. FDG-PET in the locoregional lymph node staging ofnon-small cell lung cancer: a comprehensive review of the leuven lung cancer group experience. Clin Positron Imaging 1999; 2: 223-31.
  • 33 Wong WL, Hussain K, Chevretton E. et al. Validation and clinical application of computer- combined computed tomography and positron emission tomography with 2-[18F]flouro- 2-deoxy-D-glucose head and neck images. Am J Surg 1996; 172: 628-32.
  • 34 Yu JN, Fahey FH, Gage HD. et al. Intermodality, retrospective image registration in the thorax. J Nucl Med 1995; 36: 2333-8.