Thromb Haemost 1999; 82(02): 865-869
DOI: 10.1055/s-0037-1615924
Research Article
Schattauer GmbH

Gene Trap, Gene Knockout, Gene Knock-In, and Transgenics in Vascular Development

Thomas N. Sato
1   The University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
› Author Affiliations
Further Information

Publication History

Publication Date:
09 December 2017 (online)

Introduction

The vascular system is one of the first organ systems to develop in our bodies. Normal development and maturation of the physiological functions of almost all of the other organs are critically dependent on the accurate and tightly controlled establishment of the vascular system. Our understanding of the mechanisms underlying the formation of the vascular system during development is still in its infancy. With further understanding of these mechanisms, we may eventually be able to correct the abnormal development and the malfunctioning of many organs by therapeutically modulating the morphology and/or physiological function of the vascular system.

Our further understanding of the vascular development can, in part, be achieved by discovering the molecules that play critical roles in this process. We could also achieve this goal by learning more about the functions of previously identified molecules in the vascular system. Discovery of new processes underlying the development of the vascular system will also contribute to further understanding of these molecular mechanisms.

Recent advances, using the whole genome approach, have resulted in a flood of new information. This trend will continue, and fortunately, a number of molecular reagents will become available. Therefore, the field will likely experience an exponential growth in terms of novel biological insights and discovering the mechanisms of vascular system development.

Occasionally, reductionistic approaches help to systematically address a number of biological problems, including the problems associated with vascular system development. One such approach is to choose an organism that allows us to systematically address these biological questions. The choice of animal models that are well-suited for the study of a particular question has led to a large number of discoveries. To address questions in vascular system development, current research has focused on animal models, including fish, frog, bird, and mouse, and also studies involving humans. It is also worthwhile to note that the branching morphogenesis of the fly trachea system has been utilized to address fundamental questions of vascular morphogenesis.

This chapter will summarize the genomic manipulation of the murine vascular system to address questions regarding vascular development. In addition, the advances that have been made in this field using such methods will be summarized.

 
  • References

  • 1 Gu H, Zou YR, Rajewsky K. Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell 1993; 73: 1155-1164.
  • 2 Sauer S, Henderson N. Cre-stimulated recombination at losP-containing DNA sequences placed into the mammalian genome. Nucleic Acids Res 1989; 17: 147-160.
  • 3 Zou YR, Muller W, Gu H, Rajewsky K. Cre-loxP-mediated gene replacement: a mouse strain producing humanized antibodies. Curr Biol 1994; 4: 1099-1103.
  • 4 Schlaeger TM, Qin Y, Fujiwara Y, Magram J, Sato TN. Vascular endothelial cell lineage-specific promoter in transgenic mice. Development 1995; 121: 1089-1098.
  • 5 Schlaeger TM, Bartunkova S, Lawitts JA, Teichmann G, Risau W, Deutsch U, Sato TN. Uniform vascular-endothelial-cell-specific gene expression in both embryonic and adult transgenic mice. Proc Natl Acad Sci USA 1997; 94: 3058-3063.
  • 6 Forrester LM, Nagy A, Sam M, Watt A, Stevenson L, Bernstein A, Joyner AL, Wurst W. An induction gene trap screen in embryonic stem cells: identification of genes that respond to retinoic acid in vitro. Proc Natl Acad Sci USA 1996; 93: 1677-1682.
  • 7 Baker RK, Haendel MA, Swanson BJ, Shambaugh JC, Micales BK, Lyons GE. In vitro preselection of gene-trapped embryonic stem cell clones for characterizing novel developmentally regulated genes in the mouse. Dev Biol 1997; 185: 201-214.
  • 8 Skarnes WC, Moss JE, Hurtley SM, Beddington RSP. Capturing genes encoding membrane and secreted proteins important for mouse development. Proc Natl Acad Sci USA 1995; 92: 6592-6596.
  • 9 Holzschu D, Lapierre L, Neubaum D, Mark WH. A molecular strategy designed for the rapid screening of gene traps based on sequence identity and gene expression pattern in adult mice. Transgenic Res 1997; 6: 97-106.
  • 10 Gossler A, Joyner AL, Rossant J, Skarnes WC. Mouse embryonic stem cells and reporter constructs to detect developmentally regulated genes. Science 1989; 244: 463-465.
  • 11 Chowdhury K, Bonaldo P, Torres M, Stoykova A, Gruss P. Evidence for the stochastic integration of gene trap vectors into the mouse germline. Nucleic Acids Res 1997; 25: 1531-1536.
  • 12 Zambrowicz BP, Friedrich GA, Buxton EC, Lilleberg SL, Person C, Sands AT. Disruption and sequence identification of 2,000 genes in mouse embryonic stem cells. Nature 1998; 392: 608-611.
  • 13 Enholm B, Paavonen K, Ristimaki A, Kumar V, Gunji Y, Klefstrom J, Kivinen L, Laiho M, Olofsson B, Joukov V, Eriksson U, Alitalo K. Comparison of VEGF, VEGF-B, VEGF-C and Ang-1 mRNA regulation by serum, growth factors, oncoproteins and hypoxia. Oncogene 1997; 14: 2475-2483.
  • 14 Mustonen T, Alitalo K. Endothelial receptor tyrosine kinases involved in angiogenesis. J Cell Biol 1995; 129: 895-898.
  • 15 Kukk E, Lymboussaki A, Taira S, Kaipainen A, Jeltsch M, Joukov V, Alitalo K. VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic vascular development. Development 1996; 122: 3829-3837.
  • 16 Joukov V, Pajusola K, Kaipainen A, Chilov D, Lahtinen I, Kukk E, Saksela O, Kalkkinen N, Alitalo K. A novel vascular endothelial factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J 1996; 15: 290-298.
  • 17 Olofsson B, Korpelainen E, Pepper MS, Mandriota SJ, Aase K, Kumar V, Gunji Y, Jeltsch MM, Shibuya M, Alitalo K, Eriksson U. Vascular endothelial growth factor B (VEGF-B) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells. Proc Natl Acad Sci USA 1998; 95: 11709-11714.
  • 18 Aprelikova O, Pajusola K, Partanen J, Armstrong E, Alitalo R, Bailey SK, McMahon J, Wasmuth J, Huebner K, Alitalo K. FLT4, a novel class III receptor tyrosine kinase in chromosome 5q33-qter. Cancer 1992; 52: 746-748.
  • 19 Achen MG, Jeltsch M, Kukk E, Makinen T, Vitali A, Wilks AF, Alitalo K, Stacker SA. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci USA 1998; 95: 548-553.
  • 20 Joukov V, Pajusola K, Kaipainen A, Chilov D, Lahtinen I, Kukk E, Saksela O, Kalkkinen N, Alitalo K. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J 1996; 15: 290-298.
  • 21 Hatva E, Kaipainen A, Mentula P, Jaaskelainen J, Paetau A, Haltia M, Alitalo K. Expression of endothelial cell-specific receptor tyrosine kinases and growth factors in human brain tumours. Am J Pathol 1995; 146: 368-378.
  • 22 Kaipainen A, Korhonen J, Mustonen T, van Hinsbergh VW, Fang GH, Dumont D, Breitman M, Alitalo K. Expression of the FMS-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA 1995; 92: 3566-3570.
  • 23 Shalaby F, Rossant J, Yamaguchi TP, Breitman M, Schuh AC. Failure of blood island formation, vasculogenesis, and hematopoiesis in Flk-1 deficient mice. Nature 1995; 376: 62-66.
  • 24 Shalaby F, Ho J, Stanford WL, Fischer KD, Schuh AC, Schwartz L, Bernstein A, Rossant J. A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis. Cell 1997; 89: 981-990.
  • 25 Fong G-H, Klingensmith J, Wood CR, Rossant J, Breitman ML. Regulation of flt-1 expression during mouse embryogenesis suggests a role in the establishment of vascular endothelium. Dev Dyn 1996; 207: 1-10.
  • 26 Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996; 380: 435-439.
  • 27 Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS, Powell-Braxton L, Hillan KJ, Moore MW. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 1996; 380: 439-442.
  • 28 Jeltsch M, Kaipainen A, Joukov V, Meng X, Lakso M, Rauvala H, Swartz M, Fukumura D, Jain RK, Alitalo K. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 1997; 276: 1423-1425.
  • 29 Dumont DJ, Jussila L, Taipale J, Lymboussaki A, Mustonen T, Pajusola K, Breitman M, Alitalo K. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 1998; 282: 946-949.
  • 30 Dumont DJ, Yamaguchi TP, Conlon RA, Rossant J, Breitman ML. Tek novel tyrosine kinase gene located on mouse chromosome 4, is expressed in endothelial cells and their presumptive precursors. Oncogene 1992; 7: 1471-1480.
  • 31 Dumont DJ, Gradwohl GJ, Fong G-H, Auerbach R, Breitman ML. The endothelial-specific receptor tyrosine kinase, tek is a member of a new subfamily of receptors. Oncogene 1993; 8: 1293-1301.
  • 32 Iwama A, Hamaguchi I, Hashiyama M, Murayama Y, Yasunaga K, Suda T. Molecular cloning and characterization of mouse tie and tek receptor tyrosine kinase genes and their expression in hematopoietic stem cells. Biochem Biophys Res Commun 1993; 195: 301-309.
  • 33 Sato TN, Qin Y, Kozak CA, Audus KL. tie-1 and tie-2 define another class of putative receptor tyrosine kinase genes expressed in early embryonic vascular system. Proc Natl Acad Sci USA 1993; 90: 9355-9358.
  • 34 Maisonpierre PC, Goldfarb M, Yancopoulos GD, Gao G. Distinct rat genes with related profiles of expression define a TIE receptor tyrosine kinase family. Oncogene 1993; 8: 1631-1637.
  • 35 Schnurch H, Risau W. Expression of tie-2, a member of a novel family of receptor tyrosine kinases, in the endothelial cell lineage. Development 1993; 119: 957-968.
  • 36 Sato TN, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M, Gridley T, Wolburg H, Risau W, Qin Y. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 1995; 376: 70-74.
  • 37 Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, Ryan TE, Bruno J, Radziejewski C, Maisonpierre PC, Yancopoulos GD. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression clong. Cell 1996; 87: 1161-1169.
  • 38 Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997; 277: 55-60.
  • 39 Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 1996; 87: 1171-1180.
  • 40 Wang HU, Chen ZF, Anderson DJ. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4 [see comments]. Cell 1998; 93: 741-753.
  • 41 Adams RH, Wilkinson GA, Weiss C, Diella F, Gale NW, Deutsch U, Risau W, Klein R. Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis [in process citation]. Genes Dev 1999; 13: 295-306.
  • 42 Drake CJ, Cheresh DA, Little CD. An antagonist of integrin alpha v beta 3 prevents maturation of blood vessels during embryonic neovascularization. J Cell Sci 1995; 108: 2655-2661.
  • 43 Brooks PC, Clark RAF, Cheresh DA. Requirement of vascular integrin avb3 for angiogenesis. Science 1994; 264: 569-571.
  • 44 Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 1994; 264: 569-571.
  • 45 Brooks PC, Montgomery AM, Rosenfeld M, Reisfeld RA, Hu T, Klier G, Cheresh DA. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 1994; 79: 1157-1164.
  • 46 Bader BL, Rayburn H, Crowley D, Hynes RO. Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha v integrins. Cell 1998; 95: 507-519.
  • 47 Yang JT, Rayburn H, Hynes RO. Embryonic mesodermal defects in alpha 5 integrin-deficient mice. Development 1993; 119: 1093-1105.
  • 48 Yang JT, Hynes RO. Fibronectin receptor functions in embryonic cells deficient in a5b1 integrin can be replaced by av integrins. Mol Biol Cell 1996; 7: 1737-1748.
  • 49 George EL, Baldwin HS, Hynes RO. Fibronectin are essential for heart and blood vessel morphogenesis but are dispensable for initial specification of precursor cells. Blood 1997; 90: 3073-3081.
  • 50 Goh KL, Yang JT, Hynes RO. Mesodermal defects and cranial neural crest apoptosis in alpha5 integrin-null embryos. Development 1997; 124: 4309-4319.
  • 51 Huang ZF, Higuchi D, Lasky N, Broze Jr GJ. Tissue factor pathway inhibitor gene disruption produces intrauterine lethality in mice. Blood 1997; 90: 944-951.
  • 52 Toomey JR, Kratzer KE, Lasky NM, Stanton JJ, Broze Jr GJ. Targeted disruption of the murine tissue factor gene results in embryonic lethality. Blood 1996; 88: 1583-1587.
  • 53 Bugge TH, Xiao Q, Kombrinck KW, Flick MJ, Holmback K, Danton MJ, Colbert MC, Witte DP, Fujikawa K, Davie EW, Degen JL. Fatal embryonic bleeding events in mice lacking tissue factor, the cell-associated initiator of blood coagulation. Proc Natl Acad Sci USA 1996; 93: 6258-6263.
  • 54 Carmeliet P, Mackman N, Moons L, Luther T, Gressens P, Van Vlaenderen I, Demunck H, Kasper M, Breier G, Evrard P, Muller M, Risau W, Edgington T, Collen D. Role of tissue factor in embryonic blood vessel development. Nature 1996; 383: 73-75.
  • 55 Connolly AJ, Ishihara H, Kahn ML, Farese Jr RV, Coughlin SR. Role of the thrombin receptor in development and evidence for a second receptor. Nature 1996; 381: 516-519.
  • 56 Xue J, Wu Q, Westfield LA, Tuley EA, Lu D, Zhang Q, Shim K, Zheng X, Sadler JE. Incomplete embryonic lethality and fatal neonatal hemorrhage caused by prothrombin deficiency in mice. Proc Natl Acad Sci USA 1998; 95: 7603-7607.
  • 57 Sun WY, Witte DP, Degen JL, Colbert MC, Burkart MC, Holmback K, Xiao Q, Bugge TH, Degen SJ. Prothrombin deficiency results in embryonic and neonatal lethality in mice. Proc Natl Acad Sci USA 1998; 95: 7597-7602.
  • 58 Cui J, O’Shea KS, Purkayastha A, Saunders TL, Ginsburg D. Fatal haemorrhage and incomplete block to embryogenesis in mice lacking coagulation factor V. Nature 1996; 384: 66-68.
  • 59 Xiong JW, Leahy A, Lee HH, Stuhlmann H. Vezfl: a Zn transcription factor restricted to endothelial cells and their precursors. Dev Biol 1999; 206: 123-141.