Thromb Haemost 1999; 82(02): 762-771
DOI: 10.1055/s-0037-1615909
Research Article
Schattauer GmbH

Why Atherosclerotic Vessels Narrow: The Fibrin Hypothesis

Karen O. Yee
1   University of Washington, Seattle, WA, USA
,
Stephen M. Schwartz
1   University of Washington, Seattle, WA, USA
› Author Affiliations
Further Information

Publication History

Publication Date:
09 December 2017 (online)

Introduction

Conventional wisdom holds that atherosclerosis narrows vessels simply by growth of the plaque.1 We now know, however, that this is incorrect. Morphological studies from the last 10 years have shown that there is no correlation between lesion size and lumen diameter. This lack of correlation is also true in the lesions found in the apolipoprotein E (apoE)-deficient mouse model.2 Pathologic studies in the mouse model and in humans suggest that the media remodels as the plaque enlarges to maintain normal blood flow through the vessel.3,4 This normal ability of the vessel to adapt to changes in lumen diameter has been called either “adaptive remodeling” or “compensatory enlargement.” We will use the former term since “remodeling” has long been used by physiologists to describe adaptive changes of vessels to pressure or flow.

The mechanism for adaptive remodeling is not known. Critical processes may include shear stress caused by the lesion, signaling in response to medial attenuation by proteases, or poorly defined apoptotic processes.3-5 This chapter will review the evidence for adaptive remodeling and propose a mechanism for the ultimate failure of remodeling and subsequent narrowing of the affected vessel. We will suggest that the critical processes in vascular narrowing are the same processes seen in wound healing, with fibrin playing a role as a provisional matrix.

 
  • References

  • 1 Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993; 362: 801-809.
  • 2 Hofker MH, Vlijmen BJMv, Havekes LM. Transgenic mouse models to study the role APOE in hyperlipidemia and atherosclerosis. Atherosclerosis 1998; 137: 1-11.
  • 3 Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987; 316 (22) 1371-1375.
  • 4 Clarkson TB, Prichard RW, Morgan TM, Petrick GS, Klein PS. Remodeling of coronary arteries in human and non human primates. JAMA 1994; 271: 289-294.
  • 5 Keren G. Compensatory, enlargement, remodeling and restenosis. Advances in Experimental Medical Biology 1997; 430: 187-196.
  • 6 McGill HC. Arteries too good to kill. JAMA. 1994; 271 (04) 317-318.
  • 7 Prescott MF, Hasler-Rapacz J, vonLinden-Reed J, Rapacz J. Familial hypercholesterolemia associated with coronary atherosclerosis in swine bearing different alleles for apolipoprotein B. Ann N Y Acad Sci 1995; 748: 283-292.
  • 8 Grenholdt M-LM, Dalager-Pedersen S, Falk E. Coronary atherosclerosis: determinants of plaque rupture. Eur Heart J. 1998; 19 (supple. C): C24-C29.
  • 9 Ross R. The pathogenesis of atherosclerosis: an update. N Engl J Med 1986; 314: 488-500.
  • 10 Bennett MR, Evan GI, Schwartz SM. Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaques. J Clin Invest 1995; 95: 2266-2274.
  • 11 Gordon D, Reidy MA, Benditt EP, Schwartz SM. Cell proliferation in human coronary arteries. Proc Natl Acad Sci USA.. 1990; 87 (12) 4600-4604.
  • 12 O’Brien ER, Alpers CE, Steward DK, Ferguson M, Tran N, Gordon D, Benditt EP, Hinohara T, Simpson JB, Schwartz SM. Proliferation in primary and restenotic coronary atherectomy tissue: implications for anti-proliferative therapy. Circ Res. 1993; 73 (02) 223-231.
  • 13 Bjorkerud S, Bjorkerud B. Apoptosis is abundant in human atherosclerotic lesions, especially in inflammatory cells (macrophages and T cells), and may contribute to the accumulation of gruel and plaque instability. Am J Pathol 1996; 149: 367-380.
  • 14 Geng YJ, Libby P. Evidence for apoptosis in advanced human atheroma. Colocalization with interleukin-1 beta-converting enzyme. Am J Pathol 1995; 147: 251-266.
  • 15 Han DK, Haudenschild CC, Hong MK, Tinkle BT, Leon MB, Liau G. Evidence for apoptosis in human atherogenesis and in a rat vascular injury model. Am J Pathol 1995; 147: 267-277.
  • 16 Isner JM, Kearney M, Bortman S, Passeri J. Apoptosis in human atherosclerosis and restenosis. Circulation 1995; 91: 2703-2711.
  • 17 Kockx M, DeMeyer G. Apoptosis in human atherosclerosis and restenosis. Circulation 1995; 91: 394-395.
  • 18 Thomas WA, Lee KT, Kim DN. Cell population kinetics in atherogenesis. Cell births and losses in intimal cell mass-derived lesions in the abdominal aorta of swine. Ann N Y Acad Sci 1985; 454: 305-315.
  • 19 Libby P, Sukhova G, Lee RT, Liao JK. Molecular biology of atherosclerosis. Int J Cardiol. 1997; 62 (Suppl. 03) S23-S29.
  • 20 Campbell JH, Campbell GR. The cell biology of atherosclerosis-new developments. Australia New Zealand J Med 1997; 27: 497-500.
  • 21 Fuster V. Mechanisms leading to myocardial infarction: insights from studies of vascular biology. Circulation. 1994; 90 (04) 2126-2146.
  • 22 Davies MJ, Richardson PD, Woolf N, Katz DR, Mann J. Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Br Heart J 1993; 69: 377-381.
  • 23 Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation. 1995; 92 (03) 657-671.
  • 24 Libby P, Hansson GK. Involvement of the immune system in human atherogenesis: current knowledge and unanswered questions. Lab Invest 1991; 64: 5-15.
  • 25 Galis ZS, Sukhova GK, Libby P. Microscopic localization of active proteases by in situ zymography: detection of matrix metalloproteinases activity in vascular tissue. FASEB J 1995; 9: 974-980.
  • 26 Libby P, Geng YJ, Sukhova GK, Simon DI, Lee RT. Molecular determinants of atherosclerotic plaque vulnerability. Ann N Y Acad Sci 1997; 811: 134-142.
  • 27 Moreno PR, Falk E, Palacios IF, Newell JB, Fuster V, Fallon JT. Macrophage infiltration in acute coronary syndromes. Circulation. 1994; 90 (02) 775-778.
  • 28 Shah PK, Falk E, Badimon JJ, Fernandez-Ortiz A, Maihac A, Villareal-Levy G, Fallon JT, Regnstrom J, Fuster V. Human monocyte-derived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques. Circulation. 1995; 95 (06) 1565-1569.
  • 29 Hofstra L, Han DK, Liles WC, Kiener PA, Wright ME, Dassn WRM, Wellens HJJ, Schwartz SM. Monocyte/macrophage-derived Fas ligand induces apoptosis of cultured vascular smooth muscle cells: implications for atherosclerotic lesion progression. Circulation. 1998 Submitted.
  • 30 Berliner JA, Navab M, Fogelman AM, Frank JS, Demer LL, Edwards PA, Watson AD, Lusis AJ. Atherosclerosis: basic mechanisms. Circulation. 1995; 91 (09) 2488-2496.
  • 31 Nermerson Y. Tissue factor: then and now. Thromb Haemost. 1995; 74 (01) 180-184.
  • 32 Rubin E. Blood vessels. In: Pathology. J.B. Lippincott Company; Philadelphia: 1988: 452-495.
  • 33 Farb A, Burke AP, Tang AL, Liang YH, Mannan P, Smialek J, Virmani R. Coronary plaque erosion without rupture into a lipid core: a frequent cause of coronary thrombosis in sudden coronary death. Circulation 1996; 93: 1354-1363.
  • 34 Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull Jr. W, Rosenfeld ME, Schwartz CJ, Wagner WD, Wissler RW. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. Circulation. 1995; 92 (05) 1355-1374.
  • 35 Grinnell F. Mini-Review on the cellular mechanisms of disease. J Cell Biol. 1994; 124 (04) 401-404.
  • 36 Martin P. Wound healing-aiming for perfect skin regeneration. Science 1997; 276: 75-81.
  • 37 Greenberg CS, Birckbichler PJ, Rice RH. Transglutaminases: multifunctional cross-linking enzymes that stabilize tissues. FASEB J 1991; 5: 3071-3077.
  • 38 Aeschlimann D, Paulsson M. Transglutaminases: protein cross-linking enzymes in tissues and body fluids. Thromb Haemost. 1994; 71 (04) 402-415.
  • 39 Tranquillo RT, Murray JD. Mechanistic model of wound contraction. Surg Res 1993; 55: 233-247.
  • 40 Rudolph R, Berg JV, Ehrlich HP. Wound contraction and scar contracture. In: Cohen IK, Diegelmann RF, Lindblad WJ. eds. Wound Healing: Biochemical and Clinical Aspects. vol 96. W.B. Saunders; Philadelphia: 1992: 114.
  • 41 Courtman DW, Schwartz SM, Hart CE. Sequential injury of the rabbit abdominal aorta induces intramural coagulation and luminal narrowing independent of intimal mass: extrinsic pathway inhibition inhibits luminal narrowing. Circ Res 1998; 82: 996-1006.
  • 42 Gabbiani B, Hirschel BJ, Ryan GB, Statkov PR, Majno G. Granulation tissue as a contractile organ: a study of structure and function. J Exp Med 1972; 135: 719-733.
  • 43 Geary RL, Nikkari ST, Wagner WD, Williams JK, Adams MR, Dean RH. Wound healing: a paradigm for lumen narrowing after arterial reconstruction. J Vasc Surg 1998; 27: 96-108.
  • 44 Hantgan R, Francis CW, Marder VJ. Fibrinogen structure and physiology. In: Colman RW, Hirsh J, Marder VJ, Salzman EW. eds. Hemostasis and Thrombosis. 3rd ed.. J.B. Lippincott Company; Philadelphia: 1994: 277-300.
  • 45 Weisel JW, Francis CW, Nagaswami C, Marder VJ. Determination of the topology of factor XIIIa-induced fibrin g-chain cross-links by electron microscopy of ligated fragments. J Biol Chem. 1993; 268 (15) 26,618-26,624.
  • 46 Kloczewiak M, Timmons S, Hawiger J. Localization of a site interacting with human platelet receptor on carboxy-terminal segment of human fibrinogen g chain. Biochem Biophys Res Commun. 1982; 107 (01) 181-188.
  • 47 Kloczewiak M, Timmons S, Lukas TJ, Hawiger J. Platelet receptor recognition site on human fibrinogen. synthesis and structure-function relationship of peptides corresponding to the carboxy-terminal segment of the g chain. Biochemistry 1984; 23: 1767-1774.
  • 48 Albelda SM, Buck CA. Integrins and other cell adhesion molecules. FASEB J 1990; 4: 2868-2880.
  • 49 Haas TA, Plow EF. Integrin-ligand interactions: a year in review. Curr Opin Cell Biol 1994; 6: 656-662.
  • 50 Marshall JF, Rutherford DC, McCartney ACE, Mitjans F, Goodman SL, Hart IR. avb1 is a receptor for vitronectin and fibrinogen, and acts with a5b1 to mediate spreading on fibronectin. J Cell Sci 1995; 108: 1227-1238.
  • 51 Neugebauer KM, Venstrom KA, Reichardt LF. Adhesion of a chicken myeloblast cell line to fibrinogen and vitronectin through a b1-class integrin. J Cell Biol. 1992; 116 (03) 809-815.
  • 52 Suehiro K, Gailit J, Plow EF. Fibrinogen is a ligand for integrin a5b1 on endothelial cells. J Biol Chem. 1997; 272 (08) 5360-5366.
  • 53 Charo IF, Nannizzi L, Phillips DR, Hsu MA, Scarborough RM. Inhibition of fibrinogen binding to gp IIb-IIIa by a gp IIIa peptide. J Biol Chem. 1991; 266 (03) 1415-1421.
  • 54 D’Souza SE, Ginsberg MH, Burke TA, Lam SCT, Plow EF. Localization of an Arg-Gly-Asp recognition site within an integrin adhesion receptor. Science 1988; 242: 91-93.
  • 55 D’Souza SE, Ginsberg MH, Burke TA, Plow EF. The ligand binding site of the platelet integrin receptor GPIIb-IIIa is proximal to the second calcium binding domain of its a subunit. J Biol Chem. 1990; 265 (06) 3440-3446.
  • 56 D’Souza SE, Ginsberg MH, Matsueda GR, Plow EF. A discrete sequence in a platelet integrin is involved in ligand recognition. Nature 1991; 350: 66-68.
  • 57 Bacon-Baguley T, Kudryk BJ, Walz DA. Thrombospondin interaction with fibrinogen. J Biol Chem. 1987; 262 (05) 1927-1930.
  • 58 Skinner MP, Raines EW, Ross R. Dynamic expression of a1b1 and a1b2 integrin receptors by human vascular smooth muscle cells. Am J Pathol. 1994; 145 (05) 1070-1081.
  • 59 Hoshiga M, Alpers CE, Smith LL, Giachelli CM, Schwartz SM. avb3 integrin expression in normal and atherosclerotic artery. Circ Res. 1995; 77 (06) 1129-1135.
  • 60 Ikari Y, Hatsukami TS, Alpers CE, Yee KO, Giachelli CM, Schwartz SM. Alpha V beta 3 integrin is rarely expressed on migrating smooth muscle cells into fibrin matrix in carotid arteries[abstract]. Circulation. 1997; 96 (Suppl. I): I-667.
  • 61 Ylanne J, Chen Y, O’Toole TE, Loftus JC, Takada Y, Ginsberg MH. Distinct functions of integrin a and b subunit cytoplasmic domains in cell spreading and formation of focal adhesions. J Cell Biol. 1993; 122 (01) 223-233.
  • 62 Chen Y-P, O’Toole TE, Leong L, Liu B-Q, Diaz-Gonzalez F, Ginsberg MH. b3 integrin-mediated fibrin clot retraction by nucleated cells: differing behavior of aIIbb3 and avb3. Blood. 1995; 86 (07) 2606-2615.
  • 63 Katagiri Y, Hiroyama T, Akamatsu N, Suzuki H, Yamazaki H, Tanoue K. Involvement of avb3 integrin in mediating fibrin gel retraction. J Biol Chem. 1995; 270 (04) 1785-1790.
  • 64 Perez-Reyes N, Halbert CL, Smith PP, Benditt EP, McDougall JK. Immortalization of primary human smooth muscle cells. Proc Natl Acad Sci USA 1992; 89: 1224-1228.
  • 65 Carter WG. The cooperative role of the transformation-sensitive glycoproteins, GP140 and fibronectin, in cell attachment and spreading. J Biol Chem. 1982; 257 (06) 3249-3257.
  • 66 Dennis MS, Henzel WJ, Pitti RM, Lipari MT, Napier MA, Deisher TA, Bunting S, Lazarus RA. Platelet glycoprotein IIb-IIIa protein antagonists from snake venoms: evidence for a family of platelet-aggregation inhibitors. Proc Natl Acad Sci USA 1990; 87: 2471-2475.
  • 67 Barker PL, Bullens S, Bunting S, Burdick DJ, Chan KS, Deisher T, Eigenbrot C, Gadek TR, Gantzos R, Lipari MT. et al. Cyclic RGD peptide analogues as antiplatelet antithrombotics. J Med Chem. 1992; 35 (11) 2040-2048.
  • 68 Tselepis VH, Green LJ, Humphries MJ. An RGD to LDV motif conversion within the disintegrin Kistrin generates an integrin antagonist that retains potency but exhibits altered receptor specificity. J Biol Chem. 1997; 272 (34) 21341-21348.
  • 69 Lanir N, Ciano PS, Water Lvd, McDonagh J, Dvorak AM, Dvorak HF. Macrophage migration in fibrin gel matrices. J Immunol 1988; 140: 2340-2349.
  • 70 Languino LR, Plescia J, Duperray A, Brian AA, Plow EF, Geltosky JE, Altieri DC. Fibrinogen mediates leukocyte adhesion to vascular endothelium through an ICAM-1-dependent pathway. Cell 1993; 73: 1423-1434.
  • 71 Languino LR, Duperray A, Joganic KJ, Fornaro M, Thornton GB, Altieri DC. Regulation of leukocyte-endothelium interaction and leukocyte transendothelial migration by intercellular adhesion molecule 1-fibrinogen recognition. Proc Natl Acad Sci USA 1995; 92: 1505-1509.
  • 72 Brown LF, Lanir N, McDonagh J, Tognazzi K, Dvorak AM, Dvorak HF. Fibroblast migration in fibrin gel matrices. Am J Pathol. 1993; 142 (01) 273-283.
  • 73 Svee K, White J, Vaillant P, Jessurun J, Roongta U, Krumwiede M, Johnson D, Henke C. Acute lung injury fibroblast migration and invasion of a fibrin matrix is mediated by CD44. J Clin Invest. 1996; 98 (08) 1713-1727.
  • 74 Naito M, Nomura H, Iguchi A. Migration of cultured vascular smooth muscle cells into non-crosslinked fibrin gels. Thromb Res. 1996; 84 (02) 129-136.
  • 75 Henke CA, Roongta U, Mickelson DJ, Knutson JR, McCarthy JB. CD44-related chondroitin sulfate proteoglycan, a cell surface receptor implicated with tumor cell invasion, mediates endothelial cell migration on fibrinogen and invasion into a fibrin matrix. J Clin Invest. 1996; 97 (11) 2541-2552.
  • 76 Nehls V, Schuchardt E, Drenckhahn D. The effect of fibroblasts, vascular smooth muscle cells and pericytes on sprout formation of endothelial cells in a fibrin gel angiogenesis system. Microvasc Res 1994; 48: 349-363.
  • 77 Nehls V, Drenckhahn D. A novel, microcarrier-based in vitro assay for rapid and reliable quantification of three-dimensional cell migration and angiogenesis. Microvasc Res 1995; 50: 311-322.
  • 78 Nehls V, Herrmann R. The configuration of fibrin clots determines capillary morphogenesis and endothelial cell migration. Microvasc Res 1996; 51: 347-364.
  • 79 Chalupowicz DG, Chowdhury ZA, Bach TL, Barsigian C, Martinez J. Fibrin II induces endothelial cell capillary tube formation. J Cell Biol 1995; 130: 207-215.
  • 80 Shainoff JR, Page IH. Deposition of modified fibrinogen within the aortic intima. Atherosclerosis 1972; 16: 287-305.
  • 81 Smith EB, Alexander KM, Massie IB. Quantitative studies on the relationship between insoluble ‘fibrin,’ soluble fibrinogen and low density lipoprotein. Atherosclerosis 1976; 23: 19-25.
  • 82 Shekhonin BV, Tararak EM, Samokhin GP, Mitkevich OV, Mazurov AV, Vinogradov DV, Vlasik TN, Kalantarov GF, Koteliansky VE. Visualization of apoB, fibrinogen/fibrin, and fibronectin in the intima of normal and human aorta and large arteries and during atherosclerosis. Atherosclerosis 1990; 82: 213-226.
  • 83 Bini A, Kudryk BJ. Fibrinogen and fibrin in the arterial wall. Thromb Res. 1994; 75 (3f): 337-341.
  • 84 Valenzuela R, Shainoff JR, DiBello PM, Urbanic DA, Anderson JM, Matsueda GR, Kudryk BJ. Immunoelectrophoretic and immunohistochemical characterizations of fibrinogen derivatives in atherosclerotic aortic intimas and vascular prosthesis pseudointimas. Am J Pathol. 1992; 141 (04) 861-880.
  • 85 Haust MD, Wylie JC, More RH. Electron Microscopy of fibrin in human atherosclerotic lesions. Exp Mol Pathol 1965; 4: 205-216.
  • 86 Smith EB. Fibrin deposition and fibrin degradation products in atherosclerotic plaques. Thromb Res. 1994; 75 (03) 329-335.
  • 87 Stirk CM, Kochhar A, Smith EB, Thompson WD. Presence of growth-stimulating fibrin degradation products containing fragment E in human atherosclerotic plaques. Atherosclerosis 1993; 103: 159-169.
  • 88 Smith EB. Fibrinogen, fibrin and the arterial wall. Eur Heart J. 1995; 16 (Suppl A): 11-15.
  • 89 Kao VCY, Wissler RW. A study of the immunohistochemical localization of serum lipoproteins and other plasma proteins in human atherosclerotic lesions. Exp Mol Pathol 1965; 4: 465-479.
  • 90 Romanic AM, Arleth AJ, Willette RN, Ohlstein EH. Factor XIIIa cross-links lipoprotein(a) with fibrinogen and is present in human atherosclerotic lesions. Circ Res. 1998; 83 (03) 264-269.
  • 91 Sahni A, Odrljin T, Francis CW. Binding of basic fibroblast growth factor to fibrinogen and fibrin. J Biol Chem. 1998; 273 (13) 7554-7559.
  • 92 Suh TT, Holmbäck K, Jensen NJ, Daugherty CC, Small K, Simon DI, Potter SS, Degen JL. Resolution of spontaneous bleeding events but failure of pregnancy in fibrinogen-deficient mice. Genes Dev 1995; 9: 2020-2033.
  • 93 Lowe GDO. Fibrinogen and cardiovascular disease: historical introduction. Eur Heart J. 1995; 16 (Suppl A): 2-5.
  • 94 Xiao Q, Danton MJS, Witte DP, Kowala MC, Valentine MT, Degen JL. Fibrinogen deficiency is compatible with the development of atherosclerosis in mice. J Clin Invest. 1998; 101 (05) 1184-1194.