CC BY 4.0 · SynOpen 2018; 02(04): 0276-0284
DOI: 10.1055/s-0037-1610665
paper
Copyright with the author

Substituent-Dependent Chemoselective Synthesis of Highly Functionalized­ Benzo[h]quinolines and 4-Benzylpyrans from 2-Methyl-5-nitro-benzonitrile

Rahul Panwar
,
Shally,
Ranjay Shaw
,
Amr Elagamy
,
Chandan Shah
,
Ramendra Pratap*
Department of Chemistry, University of Delhi, North campus, Delhi, India-110007, India   Email: ramendrapratap@gmail.com   Email: rpratap@chemistry.du.ac.in
› Author Affiliations
RP thanks CSIR, New Delhi (No. 02(0286)/16/EMR-II) for research funding. RP and S thank the University Grants Commission (UGC, New Delhi) and RS thanks CSIR, New Delhi for Senior Research Fellowships. The authors thank the University of Delhi for providing research funding and USIC, Delhi University for providing the instrumentation facility
Further Information

Publication History

Received: 01 October 2018

Accepted after revision: 04 October 2018

Publication Date:
30 October 2018 (online)

Dedicated to Prof. Uli Kazmaier on his 59th birthday

Abstract

A facile, efficient and atom-economic synthesis of highly substituted benzo[h]qninolines was established by reaction of 2-methyl-5-nitrobenzonitrile with suitably functionalized 2H-pyran-2-ones under basic conditions. We observed that the presence of a thiomethyl group at the C-4 position of pyran provides 6-aryl-4-(2-cyano-4-nitrobenzyl)-2-oxo-2H-pyran-3-carbonitrile exclusively without any trace of benzo[h]quinolines. Depending on the nature of the functional group at C-4 of the pyran ring, different products were achieved. To probe the mechanism, we performed control experiments and isolated 3-(1-amino-7-nitro-3-thiophen-2-yl-naphthalen-2-yl)-3-piperidin-1-yl-acrylonitrile, which, on further treatment with base, provided the benzo[h]quinolines. The structure of one the products was characterized by single-crystal X-ray diffraction.

Supporting Information

 
  • References

  • 1 Tewey KM, Chen GL, Nelson EM, Liu LF. J. Biol. Chem. 1984; 259: 9182
  • 2 Pommier Y, Covey JM, Kerrigan D, Markovits J, Pharm R. Nucleic Acids Res. 1987; 15: 6713
  • 3 Larsen AK, Grondard L, Couprie J, Desoize B, Comoe L, Jardillier JC, Riou JF. Biochem. Pharmacol. 1993; 46: 1403
  • 4 Makhey D, Gatto B, Yu C, Liu A, Liu LF, LaVoie EJ. Med. Chem. Res. 1996; 56: 2795
  • 5 Nabiev I, Chourpa I, Riou JF, Nguyen CH, Lavelle F, Manfait M. Biochemistry 1994; 33: 9013
    • 6a Zishiri VK, Joshi MC, Hunter R, Chibale K, Smith PJ, Summers RL, Martin RE, Egan TJ. J. Med. Chem. 2011; 54: 6959
    • 6b Bellot F, Coslédéric F, Vendier L, Brocard J, Meunier B, Robert A. J. Med. Chem. 2010; 53: 4103
    • 6c Klingenstein R, Melnyk P, Leliveld SR, Ryckebusch A, Korth C. J. Med. Chem. 2006; 49: 5300
  • 7 Michael JP. Nat. Prod. Rep. 2008; 25: 166
  • 8 Chen YW, Chen YL, Tseng CH, Liang CC, Yang CN, Yao YC, Lu PJ, Tzeng CC. J. Med. Chem. 2011; 54: 4446
  • 9 Lilienkampf A, Mao J, Wan B, Wang Y, Franzblau SG, Kozikowski AP. J. Med. Chem. 2009; 52: 2109
    • 10a Nandhakumar R, Suresh T, Jude AL. C, Kannan VR, Mohan PS. Eur. J. Med. Chem. 2007; 42: 1128
    • 10b Kategaonkar AH, Shinde PV, Kategaonhar AH, Pasale SK, Shingate BB, Shingare MS. Eur. J. Med. Chem. 2010; 45: 3142
    • 10c Sabatini S, Gosetto F, Manfroni G, Tabarrini O, Kaatz GW, Patel D, Cecchetti V. J. Med. Chem. 2011; 54: 5722
  • 11 Mahata PK, Venkatesh C, Kumar UK. S, Ila H, Junjappa H. J. Org. Chem. 2003; 68: 3966
  • 12 Piechowska J, Gryko DT. J. Org. Chem. 2011; 76: 10220
  • 13 Younes L, Vincent H, Chandrasekaran Y, Desce MB, Acher FC, Nicolas P. J. Org. Chem. 2012; 77: 8294
  • 14 Yadav DK, Rai R, Kumar N, Singh S, Misra S, Sharma P, Shaw P, Pérez-Sanchez H, Mancera RL, Choi HE, Kim MH, Pratap R. Scientific Reports 2017; 6: 38128
    • 15a Jenekhe SA, Lu L, Alam MM. Macromolecules 2001; 34: 7315
    • 15b Aggarwal AK, Jenekhe SA. Macromolecules 1991; 24: 6806
    • 15c Zhang X, Shetty AS, Jenekhe SA. Macromolecules 1999; 32: 7422
  • 16 Skraup ZH. Monatsh. Chem. 1881; 2: 139
  • 17 Doebner O, Miller WV. Ber. Dtsch. Chem. Ges. 1884; 17: 1698
  • 18 Cohn BE, Gustavson RG. J. Am. Chem. Soc. 1928; 50: 2709
  • 19 Warren FL. J. Chem. Soc. 1936; 1366
  • 20 Peters O, Friedrichsen W. Tetrahedron Lett. 1995; 36: 8581
  • 21 Riesgo EC, Jin X, Thummel RP. J. Org. Chem. 1996; 61: 3017
  • 22 Luo Y, Pan X, Wu J. Org. Lett. 2011; 13: 1150
    • 23a Sakai N, Tamura K, Shimamura K, Ikeda R, Konakahara T. Org. Lett. 2012; 14: 836
    • 23b Huang H, Jiang H, Chen K, Liu H. J. Org. Chem. 2009; 74: 5476
  • 24 Korivi RP, Cheng CH. J. Org. Chem. 2006; 71: 7079
  • 25 Jiang B, Si YG. J. Org. Chem. 2002; 67: 9449
  • 26 Zhao P, Yan X, Yin H, Xi C. Org. Lett. 2014; 16: 1120
  • 27 Al-Mutairi TM, Al-Hazimi HM, El-Baih FM. J. Saudi. Chem. Soc. 2009; 13: 199
  • 28 Janin YL, Bisagni E, Carrez D. J. Heterocycl. Chem. 1993; 30: 1129
  • 29 Pratap R, Ram VJ. Tetrahedron Lett. 2007; 48: 2755
  • 30 Singh S, Yadav p, Sahu SN, Sharone A, Kumar B, Ram VJ. Synlett 2014; 25: 2599
  • 31 Singh S, Panwar R, Althagafi, Sharma V, Chaudhary S. Tetrahedron Lett. 2015; 56: 5203
  • 32 Singh S, Panwar R, Yadav P, Althagafi I, Sahu SN, Pratap R. RSC Adv. 2015; 5: 18335
    • 33a Tominaga Y, Ushirogochi A, Matsuda Y. J. Heterocycl. Chem. 1987; 24: 1557
    • 33b Gompper R, Kutter E, Töpfl W. Justus Liebigs Ann. Chem. 1962; 659: 90
    • 33c Ram VJ, Verma M. Indian J. Chem. 1990; 29B: 624
    • 34a Pratap R, Kumar B, Ram VJ. Tetrahedron 2006; 34: 8158
    • 34b Pratap R, Kumar B, Ram VJ. Tetrahedron 2006; 62: 8158
    • 34c Farhanullah F, Agarwal N, Goel A, Ram VJ. J. Org. Chem. 2003; 68: 2983
    • 34d Tominaga Y, Ushirogouchi A, Matsuda Y, Kobayashi G. Chem. Pharm. Bull. 1984; 32: 3384
    • 34e Ram VJ, Verma M, Hussaini FA, Shoeb A. J. Chem. Res., Synop. 1991; 98
  • 35 Crystal data for C24H23FN4O2: A red crystal (0.220 × 0.200 × 0.180 mm3) was mounted on a capillary tube for indexing and intensity data collection at 298 K with an Oxford Xcalibur Sapphire3 CCD single-crystal diffractometer (Mo Kα radiation, λ = 0.71073 Å). Routine Lorentz and polarization corrections were applied, and an absorption correction was performed using the ABSCALE 3 program [CrysAlis Pro software system, Version 171.34; Oxford Diffraction Ltd., Oxford U. K., 2011]. Patterson methods were used to locate the heavy atoms (SHELXS-86), and the remaining atoms were located from successive Fourier maps (SHELXL-97). All the non-hydrogen atoms were refined anisotropically. All hydrogen atoms were calculated after each cycle of refinement using a Riding model, with C–H = 0.93 Å + Uiso(H) = 1.2Ueq(C) for aromatic H atoms, and with C–H = 0.97 Å + Uiso(H) = 1.2Ueq(C) for methylene H atoms. Crystal data: CCDC No 1862527 for C24H23FN4O2; Mr = 416.45, crystal system: monoclinic; space group C 2/c; a = 16.9960(14) Å, b = 8.9323(6) Å, c = 26.3854(19 Å, α = 90, β = 101.583, γ = 90; V = 3924.1(5); Z = 8, ρcalcd = 1.410 Mg/m3 g cm–3; μ = 0.099 mm–1; F(000) = 1744.0, R1 = 0.0558 (3860) and wR2 = 01420 (5075) for I>2σ(I) and 226 parameters, R1= 0.0558 (3860) and wR2 = 01420 (5075), gof = 0.904 for all data.