CC BY ND NC 4.0 · SynOpen 2018; 02(02): 0161-0167
DOI: 10.1055/s-0037-1610357
paper
Copyright with the author

One-Pot Synthesis of α-Substituted Acrylates

Xi’an Jiaotong-Liverpool University, 111 Ren’ai road, SIP, Suzhou, Jiangsu Province, 215123, P. R. of China   Email: Magdalini.Matziari@xjtlu.edu.cn
,
Yixin Xie
› Author Affiliations
This work was supported by XJTLU.
Further Information

Publication History

Received: 09 April 2018

Accepted after revision: 25 April 2018

Publication Date:
29 May 2018 (online)

Abstract

A simple and efficient synthetic method towards α-substituted acrylic esters has been developed using the Horner–Wadsworth–Emmons (HWE) reaction with HCHO after alkylation of phosphonoacetates in a one-pot reaction. This method allows the smooth introduction of various side-chains, such as natural amino acids and other biologically relevant substituents. The use of mild conditions, inexpensive reagents, short reaction times and simple work-up and purification steps provides an effective and general alternative to cumbersome multistep and low-yielding procedures described to date.

Supporting Information

 
  • References

  • 1 New address: Yixin Xie, Department of Chemistry and Biochemistry, University of Delaware, 210 South College Ave., 102 Brown Laboratory, Newark, DE 19716, USA
    • 2a Christoffers J. Koripelly G. Rosiak A. Roessle M. Synthesis 2007; 1279
    • 2b Nising CF. Bräse S. Chem. Soc. Rev. 2012; 41: 988
    • 2c Chapman CJ. Frost CG. Synthesis 2007; 1
  • 3 Kohsaka Y. Yamaguchi E. Kitayama T. J. Polym. Sci., Part A: Polym. Chem. 2014; 52: 2806
  • 4 Langer R. Tirrell DA. Nature 2004; 428: 487
  • 5 Ervithayasuporn V. Chimjarn S. Inorg. Chem. 2013; 52: 13108
    • 6a Mucha A. Molecules 2012; 17: 13530
    • 6b Lee HS. Park JS. Kim BM. Gellman SH. J. Org. Chem. 2003; 68: 1575
  • 7 Wen ZK. Xu YH. Loh TP. Chem. Eur. J. 2012; 18: 13284
  • 8 Zhao W. Chen FE. Curr. Org. Synth. 2012; 9: 873
  • 9 Matziari M. Yiotakis A. Org. Lett. 2005; 7: 4049
    • 10a Matziari M. Georgiadis D. Dive V. Yiotakis A. Org. Lett. 2001; 3: 659
    • 10b Matziari M. Nasopoulou M. Yiotakis A. Org. Lett. 2006; 8: 2317
  • 11 Dive V. Georgiadis D. Matziari M. Makaritis A. Beau F. Cuniasse P. Yiotakis A. Cell. Mol. Life Sci. 2004; 61: 2010
  • 12 Georgiadis D. Dive V. Top. Curr. Chem. 2015; 360: 1; see refs 24–42 therein
  • 13 Eistetter K. Wolf HP. P. J. Med. Chem. 1982; 25: 109
  • 14 Negishi E. Tan Z. Liou SY. Liao BQ. Tetrahedron 2000; 56: 10197
    • 15a Samarat A. Fargeas V. Villieras J. Lebreton J. Amri H. Tetrahedron Lett. 2001; 42: 1273
    • 15b Le Notre J. van Mele D. Frost CG. Adv. Synth. Catal. 2007; 349: 432
  • 16 Basavaiah D. Rao JA. Satyanarayana T. Chem. Rev. 2003; 103: 811
    • 17a Frost GC. Penrose SD. Gleave R. Synthesis 2009; 627
    • 17b Ramachary DB. Venkaiah C. Reddy YV. Org. Biomol. Chem. 2014; 12: 5400
    • 18a For 9: Matziari M. Bauer K. Dive V. Yiotakis A. J. Org. Chem. 2008; 73: 8591
    • 18b For 11: Chen H. Noble F. Mothe A. Meudal H. Coric P. Danascimento S. Roques BP. George P. Fournie-Zlaluski MC. J. Med. Chem. 2000; 43: 1398
    • 18c For 14: Borszeky K. Mallat T. Baiker A. Tetrahedron: Asymmetry 1997; 8: 3745
    • 18d For 15: Ref. 5b
    • 18e For OH analogue of 17: Candish L. Lupton DW. Org. Lett. 2010; 12: 4836
    • 18f For 19: Yadav JS. Ravishankar R. Tetrahedron Lett. 1991; 32: 2629
    • 18g For 21: Tamura O. Shiro T. Ogasawara M. Toyao A. Ishibashi H. J. Org. Chem. 2005; 70: 4569
    • 18h For 22: Ono N. Miyake H. Fujii M. Kaji A. Tetrahedron Lett. 1983; 24: 3477
    • 18i For 23: Vassiliou S. Mucha A. Cuniasse P. Georgiadis D. Lucet-Levannier K. Beau F. Kannan R. Murphy G. Knauper V. Rio MC. Basset P. Yiotakis A. Dive V. J. Med. Chem. 1999; 42: 2610
    • 18j For 24: Ravikumar VT. Swaminathan S. Rajagopalan K. Tetrahedron Lett. 1984; 25: 6045
    • 19a Lelais G. Micuch P. Lefebre DJ. Rossi F. Seebach D. Helv. Chim. Acta 2004; 87: 3131
    • 19b Labuschagne JH. Malherbe JS. Meyer CJ. Schneider DF. Tetrahedron Lett. 1976; 39: 3571
  • 20 Yi CS. Liu N. J. Organomet. Chem. 1998; 553: 157
  • 21 Surprisingly, alkylation conditions of phosphoacetates have scarcely been investigated. For a specific example, see: Vasil’ev AA. Engman L. Serebryakov EP. J. Chem. Soc., Perkin Trans. 1 2000; 2211; and ref, 21 & 22 cited therein
    • 22a For Cbz-derivative: Boseggia E. Gatos M. Lucatello L. Mancin F. Moro S. Palumbo M. Sissi C. Tecilla P. Tonellato U. Zagotto G. J. Am. Chem. Soc. 2004; 126: 4543
    • 22b For Boc-derivative: Menger FM. Bian J. Sizova E. Martinson DE. Seredyuk VA. Org. Lett. 2004; 6: 261
  • 23 Georgiadis D. Cuniasse P. Cotton J. Yiotakis A. Dive V. Biochemistry 2004; 43: 8048
  • 24 Porcheddu A. De Luca L. Giacomelli G. Synlett 2009; 20: 3368
  • 25 For –COOH analogue of 3: Cobley JC. Lennon IC. Praquin C. Zanotti-Gerosa A. Org. Process Res. Dev. 2003; 7: 407
  • 26 Matziari M. Bauer K. Dive V. Yiotakis A. J. Org. Chem. 2008; 73: 8591
  • 27 Basavaiah D. Krishnamacharyulu M. Rao AJ. Synth. Commun. 2000; 30: 20