CC BY 4.0 · SynOpen 2018; 02(02): 0213-0221
DOI: 10.1055/s-0037-1610167
paper
Copyright with the author

Room Temperature, Open-Flask C–P Bond-Formation on Water under Catalyst-Free Conditions

Rakhee Choudhary
MFOS Laboratory, Department of Chemistry (Centre of Advanced Study), University of Rajasthan, JLN Marg, Jaipur, Rajasthan-302004, India   Email: badsarass4@uniraj.ac.in   Email: sattubhu2005@gmail.com
,
Rekha Bai
MFOS Laboratory, Department of Chemistry (Centre of Advanced Study), University of Rajasthan, JLN Marg, Jaipur, Rajasthan-302004, India   Email: badsarass4@uniraj.ac.in   Email: sattubhu2005@gmail.com
,
Pratibha Singh
MFOS Laboratory, Department of Chemistry (Centre of Advanced Study), University of Rajasthan, JLN Marg, Jaipur, Rajasthan-302004, India   Email: badsarass4@uniraj.ac.in   Email: sattubhu2005@gmail.com
,
Mahesh C. Sharma
MFOS Laboratory, Department of Chemistry (Centre of Advanced Study), University of Rajasthan, JLN Marg, Jaipur, Rajasthan-302004, India   Email: badsarass4@uniraj.ac.in   Email: sattubhu2005@gmail.com
,
MFOS Laboratory, Department of Chemistry (Centre of Advanced Study), University of Rajasthan, JLN Marg, Jaipur, Rajasthan-302004, India   Email: badsarass4@uniraj.ac.in   Email: sattubhu2005@gmail.com
› Author Affiliations
The authors thank SERB-DST, New Delhi (YSS/2015/001870), DST- New Delhi for INSPIRE Faculty Award (IFA-2014/CH-167) and the Council of Scientific& Industrial Research-India (02(0341)/18/EMR-II).

Further Information

Publication History

Received: 31 March 2018

Accepted after revision: 08 May 2018

Publication Date:
13 June 2018 (online)


‡Authors contributed equally

Abstract

A catalyst-free C–P bond-formation in an open flask at room temperature between isatin derivatives and phosphorus surrogates on water is described. Isatin derivatives possessing different substitutes underwent C–P coupling reaction with a variety of phosphine oxides under the reaction conditions employed, providing the desired products in up to quantitative yields.

Supporting Information

 
  • References and Notes

    • 1a Quin LD. A Guide to Organophosphorus Chemistry . Wiley Interscience; New York: 2000
    • 1b Tang W. Zhang X. Chem. Rev. 2003; 103: 3029
    • 1c Montchamp J.-L. Acc. Chem. Res. 2014; 47: 77
    • 1d Redmore D. Chem. Rev. 1971; 71: 315
    • 1e Van der Jeught S. Stevens CV. Chem. Rev. 2009; 109: 2672
    • 1f Romero-Nieto C. Lýpez-Andarias A. Egler-Lucas C. Gebert F. Neus J.-P. Pilgram O. Angew. Chem. Int. Ed. 2015; 54: 15872
    • 2a Phosphorus Ligands in Asymmetric Catalysis . Borner A. Wiley; New York: 2008
    • 2b P-Stereogenic Ligands in Enantioselective Catalysis . Grabulosa A. Royal Society of Chemistry; Cambridge: 2011
    • 3a Demkowicz S. Rachon J. Dasko M. Kozak W. RSC Adv. 2016; 6: 7101
    • 3b Mucha A. Kafarski P. Berlicki L. J. Med. Chem. 2011; 54: 5955
  • 4 van Berkel SS. van Eldijk MB. van Hest JC. M. Angew. Chem. Int. Ed. 2011; 50: 8806
    • 5a Wang C. Fukazawa A. Taki M. Sato Y. Higashiyama T. Yamaguchi S. Angew. Chem. Int. Ed. 2015; 54: 15213
    • 5b Queffelec C. Petit M. Janvier P. Knight DA. Bujoli B. Chem. Rev. 2012; 112: 3777
    • 5c Baumgartner T. Reau R. Chem. Rev. 2006; 106: 4681
    • 6a Allen MC. Fuhrer W. Tuck B. Wade R. Wood JM. J. Med. Chem. 1989; 32: 1652
    • 6b Miller DJ. Hammond SM. Anderluzzi D. Bugg TD. H. J. Chem. Soc., Perkin Trans. 1 1998; 131
    • 6c Peyman A. Stahl W. Wagner K. Ruppert D. Budt KH. Bioorg. Med. Chem. Lett. 1994; 4: 2601
    • 6d Atherton FR. Hassal CH. Lambert RW. J. Med. Chem. 1986; 29: 29
    • 6e Emsley J. Hall D. The Chemistry of Phosphorus . Harper & Row; London: 1976: 494
    • 6f Meyer JH. Barlett PA. J. Am. Chem. Soc. 1998; 120: 4600
    • 6g Maier L. Spoerri H. Phosphorus, Sulfur Silicon Relat. Elem. 1991; 61: 69
    • 7a Jablonkai E. Keglevich G. Org. Prep. Proced. Int. 2014; 46: 281
    • 7b Hirao T. Masunaga T. Ohshiro Y. Agawa T. Tetrahedron Lett. 1980; 21: 3595
    • 7c Hirao T. Masunaga T. Yamada N. Ohshiro Y. Agawa T. Bull. Chem. Soc. Jpn. 1982; 55: 909
    • 7d Hirao T. Masunaga T. Ohshiro Y. Agawa T. Synthesis 1981; 56
    • 7e Schwan AL. Chem. Soc. Rev. 2004; 33: 218
    • 7f Prim D. Campagne JM. Joseph D. Andrioletti B. Tetrahedron 2002; 58: 2041
    • 8a Kohno J. Koguchi Y. Nishio M. Nakao K. Juroda M. Shimizu R. Ohnuki T. Komatsubara S. J. Org. Chem. 2000; 65: 990
    • 8b Toshinori K. Shizuka S. Hideyuki S. Ayumi O. Haruaki I. Takaaki K. Juńichi K. J. Nat. Prod. 2006; 69: 1517
    • 8c Tokunaga T. Hume WE. Umezome T. Okazaki K. Ueki Y. Kumagai K. Hourai S. Nagamine J. Seki H. Taiji M. Noguchi H. Nagata R. J. Med. Chem. 2001; 44: 4641
    • 8d Galliford CV. Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
    • 8e Stratmann K. Moore RE. Bonjouklian R. Deeter JB. Patterson GM. L. Shaffer S. Smith CD. Smitka TA. J. Am. Chem. Soc. 1994; 116: 9935
    • 8f Rasmussen HB. Macleod JK. J. Nat. Prod. 1997; 60: 1152
    • 8g Tokunaga T. Hume WE. Nagamine J. Kawamura T. Taiji M. Nagata R. Bioorg. Med. Chem. Lett. 2005; 15: 1789
    • 8h Edmondson SD. Danishefsky SJ. Angew. Chem. Int. Ed. 1998; 37: 1138
    • 8i Lerchner A. Carreira EM. J. Am. Chem. Soc. 2002; 124: 14826
    • 9a Braude F. Lindwall HG. J. Am. Chem. Soc. 1933; 55: 325
    • 9b Luppi G. Cozzi PG. Monari M. Kaptein B. Broxterman QB. Tomasini C. J. Org. Chem. 2005; 70: 7418
    • 9c Guo Q. Bhanushali M. Zhao CG. Angew. Chem. Int. Ed. 2010; 49: 9460
    • 9d Marshall JA. Chem. Rev. 2000; 100: 3163
    • 9e Denmark SE. Fu J. Chem. Rev. 2003; 103: 2763
    • 9f Shintani R. Inoue M. Hayashi T. Angew. Chem. Int. Ed. 2006; 45: 3353
    • 10a Yu R. Chen X. Martin SF. Wang Z. Org. Lett. 2017; 19: 1808
    • 10b Fu T. Qiao H. Peng Z. Hu G. Wu X. Gao Y. Zhao Y. Org. Biomol. Chem. 2014; 12: 2895
    • 10c Berrino R. Cacchi S. Fabrizi G. Goggiamani A. Stabile P. Org. Biomol. Chem. 2010; 8: 4518
    • 10d Zhang JS. Chen T. Yang J. Han LB. Chem. Commun. 2015; 7540
    • 10e He Y. Wu H. Toste FD. Chem. Sci. 2015; 6: 1194
    • 10f Zhuang R. Xu J. Cai Z. Tang G. Fang M. Zhao Y. Org. Lett. 2011; 13: 2110
    • 10g Petrakis KS. Nagabhushan TL. J. Am. Chem. Soc. 1987; 109: 2831
    • 10h Zhao YL. Wu GJ. Han FS. Chem. Commun. 2012; 5868
    • 10i Yang J. Xiao J. Chen T. Yin SF. Han LB. Chem. Commun. 2016; 12233
    • 10j Wang T. Sang S. Liu L. Qiao H. Gao Y. Zhao Y. J. Org. Chem. 2014; 79: 608
    • 10k Yang J. Chen T. Han L.-B. J. Am. Chem. Soc. 2015; 137: 1782
    • 10l Hu G. Chen W. Fu T. Peng Z. Qiao H. Gao Y. Zhao Y. Org. Lett. 2013; 15: 5362
    • 10m Andaloussi M. Lindh J. Savmarker J. Sjoberg PJ. R. Larhed M. Chem. Eur. J. 2009; 15: 13069
    • 10n Xu W. Hu G. Xu P. Gao Y. Yin Y. Zhao Y. Adv. Synth. Catal. 2014; 356: 2948
    • 10o Yang J. Xiao J. Chen T. Han LB. J. Org. Chem. 2016; 81: 3911
    • 10p Miao T. Wang L. Adv. Synth. Catal. 2014; 356: 967
    • 10q Luo H. Liu H. Chen X. Wang K. Luo X. Wang K. Chem. Commun. 2017; 956
    • 10r Liu C. Szostak M. Angew. Chem. Int. Ed. 2017; 56: 12718
    • 10s Fu WC. So CM. Kwong FY. Org. Lett. 2015; 17: 5906
    • 11a Li C. Yano T. Ishida N. Murakami M. Angew. Chem. Int. Ed. 2013; 52: 9801
    • 11b Hong G. Mao D. Wu S. Wang L. J. Org. Chem. 2014; 79: 10629
    • 11c Feng CG. Ye M. Xiao KJ. Li S. Yu JQ. J. Am. Chem. Soc. 2013; 135: 9322
    • 12a Zhou AX. Mao LL. Wang GW. Yang SD. Chem. Commun. 2014; 8529
    • 12b Zhu Y. Chen T. Li S. Shimada S. Han LB. J. Am. Chem. Soc. 2016; 138: 5825
    • 12c Gao M. Li Y. Xie F. Chauvin R. Cui X. Chem. Commun. 2016; 2846
    • 12d Wang T. Chen S. Shao A. Gao M. Huang Y. Lei A. Org. Lett. 2015; 17: 118
    • 12e Zhang HJ. Lin W. Wu Z. Ruan W. Wen TB. Chem. Commun. 2015; 3450
    • 12f Hou C. Ren Y. Lang R. Hu X. Xia C. Li F. Chem. Commun. 2012; 5181
    • 12g Kuninobu Y. Yoshida T. Takai K. J. Org. Chem. 2011; 76: 7370
    • 12h Baslé O. Li C.-J. Chem. Commun. 2009; 4124
    • 12i Ke J. Tang Y. Yi H. Li Y. Cheng Y. Liu C. Lei A. Angew. Chem. Int. Ed. 2015; 54: 6604
    • 12j Yang J. Chen T. Zhou Y. Yin S. Han LB. Chem. Commun. 2015; 3549
    • 12k Huo C. Wang C. Wu M. Jia X. Wang X. Yuan Y. Xie H. Org. Biomol. Chem. 2014; 12: 3123
    • 12l Kagayama T. Nakano A. Sakaguchi S. Ishii Y. Org. Lett. 2006; 8: 407
    • 13a Lenker HK. Richard ME. Reese KP. Carter AF. Zawisky JD. Winter EF. Bergeron TW. Guydon KS. Stockland Jr RA. J. Org. Chem. 2012; 77: 1378
    • 13b Hans M. Delaude L. Rodriguez J. Coquerel Y. J. Org. Chem. 2014; 79: 2758
    • 13c Carlone A. Bartoli G. Bosco M. Sambri L. Melchiorre P. Angew. Chem. Int. Ed. 2007; 46: 4504
    • 13d Yang X.-Y. Tay WS. Li Y. Pullarkat SA. Leung P.-H. Organometallics 2015; 34: 5196
    • 13e Guo H. Yoshimura A. Chen T. Saga Y. Han L.-B. Green Chem. 2017; 19: 1502
    • 13f Hirai T. Han L.-B. Org. Lett. 2007; 9: 53
    • 13g Peng P. Lu Q. Peng L. Liu C. Wang G. Lei A. Chem. Commun. 2016; 12338
    • 14a Deng T. Wang H. Cai C. Org. Biomol. Chem. 2014; 12: 5843
    • 14b Srinivas V. Balaraman E. Sajna KV. Swamy KC. K. Eur. J. Org. Chem. 2011; 4222
    • 15a Peng L. Wang IL. Bai JF. Jia LN. Yang QC. Huang QC. Xu XY. Wang LX. Tetrahedron Lett. 2011; 52: 1157
    • 15b Gurevich PA. Akhmetova GZ. Gubaidullin AT. Moskva VV. Litvinov IN. A. Russ. J. Gen. Chem. 1998; 68: 1501
    • 15c Shankar J. Karnakar K. Srinivas B. Nageswar YV. D. Tetrahedron Lett. 2010; 51: 3938
    • 15d Molleti N. Kang JY. Org. Biomol. Chem. 2016; 14: 8952
    • 15e Nazish M. Jakhar A. Khan NH. Verma S. Kureshy RI. Abdi SH. R. Bajaj HC. Appl. Catal., A 2016; 515: 116
    • 16a Hosseini-Sarvari M. Tavakolian M. Can. J. Chem. 2013; 91: 1117
    • 16b Jang HS. Kim Y. Kim DY. Beilstein J. Org. Chem. 2016; 12: 1551
    • 16c Shankar J. Karnakar K. Srinivas B. Nageswar YV. D. Tetrahedron Lett. 2010; 51: 3938
    • 16d Nagarapu L. Mallepalli R. Kumar UN. Venkateswarlu P. Bantu R. Yeramanchi L. Tetrahedron Lett. 2012; 53: 1699
    • 16e Nazish M. Saravanan S. Khan NH. Kumari P. Kureshy RI. Abdi SH. R. Bajaj HC. ChemPlusChem 2014; 79: 1753
    • 16f Liu C. Zhang Y. Qian Q. Yuan D. Yao Y. Org. Lett. 2014; 16: 6172
    • 17a Choudhary R. Bai R. Singh P. Sharma MC. Badsara SS. Tetrahedron 2017; 73: 4323
    • 17b Singh P. Bai R. Choudhary R. Sharma MC. Badsara SS. RSC Adv. 2017; 7: 30594
    • 17c Bai R. Choudhary R. Singh P. Thakuria R. Sharma MC. Badsara SS. ChemistrySelect 2018; 3: 3221
  • 18 Garden SJ. Torres JC. de Silva LE. Pinto AC. Synth. Commun. 1998; 28: 1679
    • 19a Reactivity of PH Group of Phosphorus Based Compounds . Chapter 3, 14 Troev KD. Elsevier; Amsterdam: 2018
    • 19b Xie J. Li H. Xue Q. Cheng Y. Zhu C. Adv. Synth. Catal. 2012; 354: 1646
    • 19c Han W. Mayer P. Ofial AR. Adv. Synth. Catal. 2010; 352: 1667
    • 19d Copey L. Jean-Gerard L. Andrioletti B. Framery E. Tetrahedron Lett. 2016; 57: 543
    • 19e Wen L.-R. Sun Y.-X. Zhang J.-W. Guo WS. Li M. Green Chem. 2018; 20: 125
  • 20 Hosseini-Sarvari M. Tavakolian M. Can. J. Chem. 2013; 91: 1117