CC BY ND NC 4.0 · SynOpen 2018; 02(02): 0180-0191
DOI: 10.1055/s-0037-1610154
paper
Copyright with the author

Triflic Anhydride Promoted Synthesis of Primary Amides and their Conversion into Nitriles

Anil Rana
Drug Discovery Research Center, Translational Health Science and Technology Institute Faridabad, 121001, India   Email: dinesh.mahajan@thsti.res.in   Email: chemidinesh@gmail.com
,
Varun Kumar
Drug Discovery Research Center, Translational Health Science and Technology Institute Faridabad, 121001, India   Email: dinesh.mahajan@thsti.res.in   Email: chemidinesh@gmail.com
,
Lata Tiwari
Drug Discovery Research Center, Translational Health Science and Technology Institute Faridabad, 121001, India   Email: dinesh.mahajan@thsti.res.in   Email: chemidinesh@gmail.com
,
Anamika Thakur
Drug Discovery Research Center, Translational Health Science and Technology Institute Faridabad, 121001, India   Email: dinesh.mahajan@thsti.res.in   Email: chemidinesh@gmail.com
,
Chhuttan Lal Meena
Drug Discovery Research Center, Translational Health Science and Technology Institute Faridabad, 121001, India   Email: dinesh.mahajan@thsti.res.in   Email: chemidinesh@gmail.com
,
Dinesh Mahajan*
Drug Discovery Research Center, Translational Health Science and Technology Institute Faridabad, 121001, India   Email: dinesh.mahajan@thsti.res.in   Email: chemidinesh@gmail.com
› Author Affiliations
We would like to thank the Translational Health Science and Technology Institute (THSTI) for intramural research funding and DBT-BIRAC for grant BT/CRS0200/CRS-10/16.

Further Information

Publication History

Received: 24 March 2018

Accepted after revision: 30 April 2018

Publication Date:
08 June 2018 (online)

Abstract

A facile, two-pot conversion of carboxylic acids into the corresponding nitriles has been developed using triflic anhydride as a promoter and aqueous NH4OH as a source of nitrogen. The methodology involves synthesis of primary amides from carboxylic acids as the key first step using triflic anhydride and aqueous NH4OH as a source of ­nitrogen. Triflic anhydride is also found to be an excellent reagent for conversion of primary amides into nitriles, affording high yields with considerable chemoselectivity and functional group tolerance. In spite of the mild reaction conditions and broad substrate scope for the two-step conversions, all attempts for one-pot domino conversion of acids into nitriles exhibited limited success because of poor yields.

Supporting Information

 
  • References

  • 1 Fleming FF. Yao L. Ravikumar PC. Funk L. Shook BC. J. Med. Chem. 2010; 53: 7902
    • 2a Fleming FF. Nat. Prod. Rep. 1999; 16: 597
    • 2b Monadjemi S. El Roz M. Richard C. Ter Halle A. Environ. Sci. Technol. 2011; 45: 9582
    • 2c Scheuermann H. Seefelder M. US Pat. 3,652,636, 1972
    • 3a Murphy T. Case HL. Ellsworth E. Hagen S. Huband M. Joannides T. Limberakis C. Marotti KR. Ottolini AM. Rauckhorst M. Starr J. Stier M. Taylor C. Zhu T. Blaser A. Denny WA. Lu G.-L. Smaill JB. Rivault F. Bioorg. Med. Chem. Lett. 2007; 17: 2150
    • 3b Markus B. Kwon C. J. Pharm. Sci. 1994; 83: 1729
    • 3c Patterson AW. Wood WJ. L. Hornsby M. Lesley S. Spraggon G. Ellman JA. J. Med. Chem. 2006; 49: 6298
    • 5a Movassaghi M. Hill MD. Nat. Protoc. 2007; 2: 2018
    • 5b Yang J. Karver MR. Li W. Sahu S. Devaraj NK. Angew. Chem. Int. Ed. 2012; 51: 5222
    • 5c Madkour HM. F. Elgazwy AS. H. Curr. Org. Chem. 2007; 11: 853
    • 5d Elgazwy AS. S. H. Refaee MR. M. Org. Chem.: Curr. Res. 2013; 117: 1
    • 6a Zanon J. Klapars A. Buchwald SL. J. Am. Chem. Soc. 2003; 125: 2890
    • 6b Yin W. Wang C. Huang H. Org. Lett. 2013; 15: 1850
    • 6c Wu Q. Luo Y. Lei A. You J. J. Am. Chem. Soc. 2016; 138: 2885
    • 6d Noh JH. Kim J. J. Org. Chem. 2015; 80: 11624
    • 6e Rokade BV. Prabhu JR. J. Org. Chem. 2012; 77: 5364
    • 7a Villhauer EB. Brinkman JA. Naderi GB. Burkey BF. Dunning BE. Prasad K. Mangold BL. Russell ME. Hughes TE. J. Med. Chem. 2003; 46: 2774
    • 7b Singh SK. Manne N. Pal M. Beilstein J. Org. Chem. 2008; 4: 20
  • 8 Miller CS. Org. Synth. 1955; 3: 646
  • 9 Cope AC. Cotter RJ. Estes LL. Org. Synth. 1963; 4: 62
  • 10 Imamoto T. Takaoka T. Yokoyama M. Synthesis 1983; 142
  • 11 Huber VJ. Bartsch RA. Tetrahedron 1998; 54: 9281
  • 12 Kangani CO. Day BW. Kelley DE. Tetrahedron Lett. 2007; 48: 5933
  • 13 Telvekar VN. Rane RA. Tetrahedron Lett. 2007; 48: 6051
  • 14 Miyagi K. Moriyama K. Togo H. Eur. J. Org. Chem. 2013; 5886
    • 15a Huang PQ. Huang YH. Geng H. Ye JL. Sci. Rep. 2016; 6: 28801
    • 15b Huang PQ. Huang YH. Xiao KJ. J. Org. Chem. 2016; 81: 9020
    • 15c Huang PQ. Huang YH. Xiao KJ. Wang Y. Xia XE. J. Org. Chem. 2015; 80: 2861
    • 15d Cyr P. Regnier S. Bechara WS. Charette AB. Org. Lett. 2015; 17: 3386
    • 15e Pelletier G. Bechara WS. Charette AB. J. Am. Chem. Soc. 2010; 132: 12817
    • 15f Barbe G. Charette AB. J. Am. Chem. Soc. 2008; 130: 18
    • 15g Charette AB. Grenon M. J. Org. Chem. 2003; 68: 5792
  • 16 Noguchi T. Sekine M. Yokoo Y. Jung S. Imai N. Chem. Lett. 2013; 42: 580
  • 17 Bose DS. Jayalakshmi B. Synthesis 1999; 64
  • 18 Ma X. He Y. Lu M. Synth. Commun. 2014; 44: 474
  • 19 Yin H. de Almeida AM. de Almeida MV. Lindhardt AT. Skrydstrup T. Org. Lett. 2015; 17: 1248
  • 20 Ren W. Yamane M. J. Org. Chem. 2010; 75: 8410
  • 21 Schonbrunn E. Lawrence NJ. Lawrence HR. PCT Int. Appl. 2017066428, 20 Apr, 2017
  • 22 Owston NA. Parker AJ. Williams JM. J. Org. Lett. 2007; 9: 73
  • 23 Mewshaw RE. Zhou D. Zhou P. Shi X. Hornby G. Spangler T. Scerni R. Smith D. Schechter LE. Andree TH. J. Med. Chem. 2004; 47: 3823
  • 24 Rombouts F. Franken D. Martinez-Lamenca C. Braeken M. Zavattaro C. Chen J. Trabanco AA. Tetrahedron Lett. 2010; 51: 4815
  • 25 Li YT. Liao BS. Chen HP. Liu ST. Synthesis 2011; 2639
  • 26 Gnanamgari D. Crabtree RH. Organometallics 2009; 28: 922
  • 27 Bonne D. Dekhane M. Zhu J. J. Am. Chem. Soc. 2005; 127: 6926
  • 28 Huang Y. Chen T. Li Q. Zhou Y. Yin SF. Org. Biomol. Chem. 2015; 13: 7289
  • 29 Jevtic II. Dosen-Micovic L. Ivanovic ER. Ivanovic MD. Synthesis 2016; 48: 1550
  • 30 Chen ST. Jang MK. Wang K.-T. Synthesis 1993; 858
  • 31 Doroski MD. Maderna A. O’Donnell CJ. Subramanyam C. Vetelino BC. Dushin RG. Strop P. Graziani EI. PCT Int. Appl. 2013072813, 23 May, 2013
  • 32 Bailen MA. Chinchilla R. Dodsworth DJ. Najera C. Tetrahedron Lett. 2000; 41: 9809
  • 33 Zemolka S. Nolte B. Linz K. Saunders DJ. Schroeder W. Englberger W. Theil F. Schick H. Kaufmann J. Gebauer J. PCT Int. Appl. 2009118174, 01 Oct, 2009
  • 34 Xia Z. Smith CD. J. Org. Chem. 2001; 66: 3459
  • 35 Ghosh P. Pariyar GC. Saha B. Subba R. Synth. Commun. 2016; 46: 685
  • 36 Ushkov AV. Grushin VV. J. Am. Chem. Soc. 2011; 133: 10999
  • 37 Nambo M. Yar M. Smith JD. Crudden CM. Org. Lett. 2015; 17: 50
  • 38 Zhang GY. Yu JT. Hu ML. Cheng J. J. Org. Chem. 2013; 78: 2710
  • 39 Roosen PC. Kallepalli VA. Chattopadhyay B. Singleton DA. Maleczka Jr RE. Smith II IM. R. J. Am. Chem. Soc. 2012; 134: 11350
  • 40 Yu L. Zhang H. Li X. Ye J. Liu J. Xu Q. Lautens M. Org. Lett. 2014; 16: 1346
  • 41 Das S. Addis D. Zhou S. Junge K. Beller M. J. Am. Chem. Soc. 2010; 132: 1770
  • 42 Pedras MS. C. Minic Z. Thongbam PD. Bhaskar V. Montaut S. Phytochemistry 2010; 71: 1952
  • 43 Augustine JK. Atta RN. Ramappa BK. Boodappa C. Synlett 2009; 3378
  • 44 Cai L. Liu X. Tao X. Shen D. Synth. Commun. 2004; 34: 1215
  • 45 Cantillo D. de Frutos O. Rincon JA. Mateos C. Kappe CO. J. Org. Chem. 2014; 79: 223
  • 46 Cohen DT. Buchwald SL. Org. Lett. 2015; 17: 202
  • 47 Shimojo H. Moriyama K. Togo H. Synthesis 2013; 45: 2155
  • 48 Hoang CT. Bouillere F. Johannesen S. Zulauf A. Panel C. Pouilhes A. Gori D. Alezra V. Kouklovsky C. J. Org. Chem. 2009; 74: 4177
  • 49 Sureshbabu VV. Naik SA. Nagendra G. Synth. Commun. 2009; 39: 395
  • 50 Madhu C. Panguluri NR. Narendra N. Panduranga V. Sureshbabu VV. Tetrahedron Lett. 2014; 55: 6831
  • 51 Tao H. Weng Y. Zhuo R. Chang G. Urbatsch IL. Zhang Q. ChemBiochem 2011; 12: 868