Semin Respir Crit Care Med 2017; 38(04): 404-416
DOI: 10.1055/s-0037-1603087
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Etiology and Immunopathogenesis of Sarcoidosis: Novel Insights

Els Beijer
1   Department of Pulmonology, St. Antonius Hospital, Nieuwegein, The Netherlands
,
Marcel Veltkamp
1   Department of Pulmonology, St. Antonius Hospital, Nieuwegein, The Netherlands
2   Department of Pulmonology, University Medical Center, Utrecht, The Netherlands
,
Bob Meek
3   Department of Medical Microbiology and Immunology, St Antonius Hospital, Nieuwegein, The Netherlands
,
David Robert Moller
4   Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
› Author Affiliations
Further Information

Publication History

Publication Date:
27 July 2017 (online)

Abstract

Sarcoidosis is a disorder of unknown etiology. It is a systemic disease, frequently involving the lungs, skin, eyes, and lymph nodes. It is characterized by formation of noncaseating granulomas at the site(s) of disease. Sarcoidosis has a complex disease pathogenesis, with involvement of both the innate and adaptive immune systems. Several innate immune system receptors including NOD-like receptors and Toll-like receptors appear to be involved in the development of sarcoidosis as well as cellular players such as dendritic cells and macrophages. Furthermore, lymphocytes from the adaptive immune system including Th1, Th17, regulatory T cells, and B cells are likely to play a role in the sarcoidosis disease pathogenesis as well. Possibly, genetic susceptibility and exposure to particular etiologic agents including mycobacterial and propionibacterial antigens, metals, and silica can cause sarcoidosis. Besides exogenous triggers, also self-compounds such as serum amyloid A and vimentin, have been found to play a role in the development of sarcoidosis. It is likely that sarcoidosis does not have one single cause but rather is the result of the interplay between different etiologic agents and the immune system in predisposed individuals.

 
  • References

  • 1 Chen ES, Moller DR. Etiologic role of infectious agents. Semin Respir Crit Care Med 2014; 35 (03) 285-295
  • 2 Costabel U, Hunninghake GW. ; Sarcoidosis Statement Committee. American Thoracic Society. European Respiratory Society. World Association for Sarcoidosis and Other Granulomatous Disorders. ATS/ERS/WASOG statement on sarcoidosis. Eur Respir J 1999; 14 (04) 735-737
  • 3 De Vuyst P, Dumortier P, Schandené L, Estenne M, Verhest A, Yernault JC. Sarcoidlike lung granulomatosis induced by aluminum dusts. Am Rev Respir Dis 1987; 135 (02) 493-497
  • 4 Werfel U, Schneider J, Rödelsperger K. , et al. Sarcoid granulomatosis after zirconium exposure with multiple organ involvement. Eur Respir J 1998; 12 (03) 750
  • 5 Newman KL, Newman LS. Occupational causes of sarcoidosis. Curr Opin Allergy Clin Immunol 2012; 12 (02) 145-150
  • 6 Zissel G, Müller-Quernheim J. Specific antigen(s) in sarcoidosis: a link to autoimmunity?. Eur Respir J 2016; 47 (03) 707-709
  • 7 Tanabe T, Yamaguchi N, Okuda M, Ishimaru Y, Takahashi H. Immune system reaction against environmental pollutants [Japanese]. Nippon Eiseigaku Zasshi 2015; 70 (02) 115-119
  • 8 Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev 2012; 249 (01) 158-175
  • 9 Iwasaki T, Kaneko N, Ito Y. , et al. Nod2-nodosome in a cell-free system: implications in pathogenesis and drug discovery for Blau syndrome and early-onset sarcoidosis. Sci World J 2016; 2016: 2597376
  • 10 Tanabe T, Ishige I, Suzuki Y. , et al. Sarcoidosis and NOD1 variation with impaired recognition of intracellular Propionibacterium acnes . Biochim Biophys Acta 2006; 1762 (09) 794-801
  • 11 Gabrilovich MI, Walrath J, van Lunteren J. , et al. Disordered Toll-like receptor 2 responses in the pathogenesis of pulmonary sarcoidosis. Clin Exp Immunol 2013; 173 (03) 512-522
  • 12 Veltkamp M, Wijnen PA, van Moorsel CH. , et al. Linkage between Toll-like receptor (TLR) 2 promotor and intron polymorphisms: functional effects and relevance to sarcoidosis. Clin Exp Immunol 2007; 149 (03) 453-462
  • 13 Veltkamp M, van Moorsel CH, Rijkers GT, Ruven HJ, Grutters JC. Genetic variation in the Toll-like receptor gene cluster (TLR10-TLR1-TLR6) influences disease course in sarcoidosis. Tissue Antigens 2012; 79 (01) 25-32
  • 14 Pabst S, Bradler O, Gillissen A, Nickenig G, Skowasch D, Grohe C. Toll-like receptor-9 polymorphisms in sarcoidosis and chronic obstructive pulmonary disease. Adv Exp Med Biol 2013; 756: 239-245
  • 15 Veltkamp M, Van Moorsel CH, Rijkers GT, Ruven HJ, Van Den Bosch JM, Grutters JC. Toll-like receptor (TLR)-9 genetics and function in sarcoidosis. Clin Exp Immunol 2010; 162 (01) 68-74
  • 16 Rastogi R, Du W, Ju D. , et al. Dysregulation of p38 and MKP-1 in response to NOD1/TLR4 stimulation in sarcoid bronchoalveolar cells. Am J Respir Crit Care Med 2011; 183 (04) 500-510
  • 17 Witko-Sarsat V, Rieu P, Descamps-Latscha B, Lesavre P, Halbwachs-Mecarelli L. Neutrophils: molecules, functions and pathophysiological aspects. Lab Invest 2000; 80 (05) 617-653
  • 18 Hickey MJ, Kubes P. Intravascular immunity: the host-pathogen encounter in blood vessels. Nat Rev Immunol 2009; 9 (05) 364-375
  • 19 Dirican N, Anar C, Kaya S, Bircan HA, Colar HH, Cakir M. The clinical significance of hematologic parameters in patients with sarcoidosis. Clin Respir J 2016; 10 (01) 32-39
  • 20 Ding YL, Sun YC, Shen N, Chen YH, Yao WZ. The clinical significance of increased neutrophils in bronchoalveolar lavage fluid in sarcoidosis [in Chinese]. Zhonghua Jie He He Hu Xi Za Zhi 2016; 39 (12) 934-938
  • 21 Tutor-Ureta P, Citores MJ, Castejón R. , et al. Prognostic value of neutrophils and NK cells in bronchoalveolar lavage of sarcoidosis. Cytometry B Clin Cytom 2006; 70 (06) 416-422
  • 22 Ocal N, Dogan D, Ocal R. , et al. Effects of radiological extent on neutrophil/lymphocyte ratio in pulmonary sarcoidosis. Eur Rev Med Pharmacol Sci 2016; 20 (04) 709-714
  • 23 McKenna K, Beignon AS, Bhardwaj N. Plasmacytoid dendritic cells: linking innate and adaptive immunity. J Virol 2005; 79 (01) 17-27
  • 24 Hayashi Y, Ishii Y, Hata-Suzuki M. , et al. Comparative analysis of circulating dendritic cell subsets in patients with atopic diseases and sarcoidosis. Respir Res 2013; 14: 29
  • 25 Ota M, Amakawa R, Uehira K. , et al. Involvement of dendritic cells in sarcoidosis. Thorax 2004; 59 (05) 408-413
  • 26 Ten Berge B, Kleinjan A, Muskens F. , et al. Evidence for local dendritic cell activation in pulmonary sarcoidosis. Respir Res 2012; 13: 33
  • 27 Zaba LC, Smith GP, Sanchez M, Prystowsky SD. Dendritic cells in the pathogenesis of sarcoidosis. Am J Respir Cell Mol Biol 2010; 42 (01) 32-39
  • 28 Chen ES. Innate immunity in sarcoidosis pathobiology. Curr Opin Pulm Med 2016; 22 (05) 469-475
  • 29 Kjellin H, Silva E, Branca RM. , et al. Alterations in the membrane-associated proteome fraction of alveolar macrophages in sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 2016; 33 (01) 17-28
  • 30 Dubaniewicz A, Typiak M, Wybieralska M. , et al. Changed phagocytic activity and pattern of Fcγ and complement receptors on blood monocytes in sarcoidosis. Hum Immunol 2012; 73 (08) 788-794
  • 31 Zissel G, Müller-Quernheim J. Cellular players in the immunopathogenesis of sarcoidosis. Clin Chest Med 2015; 36 (04) 549-560
  • 32 den Haan JM, Arens R, van Zelm MC. The activation of the adaptive immune system: cross-talk between antigen-presenting cells, T cells and B cells. Immunol Lett 2014; 162 (2, Pt B): 103-112
  • 33 Ottenhof THM. Cellulaire immuniteit. In: Rijkers TG, Kroese FGM, Kallenberg CGM, Derksen RHWM. , eds. Immunologie. Houten, The Netherlands: Bohn Stafleu Van Loghum; 2009: 132-133
  • 34 Mortaz E, Rezayat F, Amani D. , et al. The roles of T helper 1, T helper 17 and regulatory T cells in the pathogenesis of sarcoidosis. Iran J Allergy Asthma Immunol 2016; 15 (04) 334-339
  • 35 Ho LP, Urban BC, Thickett DR, Davies RJ, McMichael AJ. Deficiency of a subset of T-cells with immunoregulatory properties in sarcoidosis. Lancet 2005; 365 (9464): 1062-1072
  • 36 Wahlström J, Katchar K, Wigzell H, Olerup O, Eklund A, Grunewald J. Analysis of intracellular cytokines in CD4+ and CD8+ lung and blood T cells in sarcoidosis. Am J Respir Crit Care Med 2001; 163 (01) 115-121
  • 37 Moller DR, Forman JD, Liu MC. , et al. Enhanced expression of IL-12 associated with Th1 cytokine profiles in active pulmonary sarcoidosis. J Immunol 1996; 156 (12) 4952-4960
  • 38 Shigehara K, Shijubo N, Ohmichi M. , et al. IL-12 and IL-18 are increased and stimulate IFN-gamma production in sarcoid lungs. J Immunol 2001; 166 (01) 642-649
  • 39 Kriegova E, Fillerova R, Tomankova T. , et al. T-helper cell type-1 transcription factor T-bet is upregulated in pulmonary sarcoidosis. Eur Respir J 2011; 38 (05) 1136-1144
  • 40 Berlin M, Fogdell-Hahn A, Olerup O, Eklund A, Grunewald J. HLA-DR predicts the prognosis in Scandinavian patients with pulmonary sarcoidosis. Am J Respir Crit Care Med 1997; 156 (05) 1601-1605
  • 41 Idali F, Wikén M, Wahlström J. , et al. Reduced Th1 response in the lungs of HLA-DRB1*0301 patients with pulmonary sarcoidosis. Eur Respir J 2006; 27 (03) 451-459
  • 42 Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev 2010; 236: 219-242
  • 43 Fife BT, Pauken KE. The role of the PD-1 pathway in autoimmunity and peripheral tolerance. Ann N Y Acad Sci 2011; 1217: 45-59
  • 44 Suozzi KC, Stahl M, Ko CJ. , et al. Immune-related sarcoidosis observed in combination ipilimumab and nivolumab therapy. JAAD Case Rep 2016; 2 (03) 264-268
  • 45 Palmer BE, Mack DG, Martin AK. , et al. Up-regulation of programmed death-1 expression on beryllium-specific CD4+ T cells in chronic beryllium disease. J Immunol 2008; 180 (04) 2704-2712
  • 46 Braun NA, Celada LJ, Herazo-Maya JD. , et al. Blockade of the programmed death-1 pathway restores sarcoidosis CD4(+) T-cell proliferative capacity. Am J Respir Crit Care Med 2014; 190 (05) 560-571
  • 47 Celada LJ, Rotsinger JE, Young A. , et al. Programmed death-1 inhibition of PI3K/AKT/mTOR signaling impairs sarcoidosis CD4+ T cell proliferation. Am J Respir Cell Mol Biol 2017; 56 (01) 74-82
  • 48 Oswald-Richter KA, Richmond BW, Braun NA. , et al. Reversal of global CD4+ subset dysfunction is associated with spontaneous clinical resolution of pulmonary sarcoidosis. J Immunol 2013; 190 (11) 5446-5453
  • 49 Cotliar J, Querfeld C, Boswell WJ, Raja N, Raz D, Chen R. Pembrolizumab-associated sarcoidosis. JAAD Case Rep 2016; 2 (04) 290-293
  • 50 Montaudié H, Pradelli J, Passeron T, Lacour JP, Leroy S. Pulmonary sarcoid-like granulomatosis induced by nivolumab. Br J Dermatol 2016
  • 51 Danlos FX, Pagès C, Baroudjian B. , et al. Nivolumab-induced sarcoid-like granulomatous reaction in a patient with advanced melanoma. Chest 2016; 149 (05) e133-e136
  • 52 Vorselaars AD, Crommelin HA, Deneer VH. , et al. Effectiveness of infliximab in refractory FDG PET-positive sarcoidosis. Eur Respir J 2015; 46 (01) 175-185
  • 53 Tong D, Manolios N, Howe G, Spencer D. New onset sarcoid-like granulomatosis developing during anti-TNF therapy: an under-recognised complication. Intern Med J 2012; 42 (01) 89-94
  • 54 Christoforidou A, Goudakos J, Bobos M, Lefkaditis E, Vital V, Markou K. Sarcoidosis-like granulomatosis of the hypopharynx as a complication of anti-TNF therapy. Am J Otolaryngol 2013; 34 (03) 268-272
  • 55 Curtis MM, Way SS. Interleukin-17 in host defense against bacterial, mycobacterial and fungal pathogens. Immunology 2009; 126 (02) 177-185
  • 56 Facco M, Cabrelle A, Teramo A. , et al. Sarcoidosis is a Th1/Th17 multisystem disorder. Thorax 2011; 66 (02) 144-150
  • 57 Ten Berge B, Paats MS, Bergen IM. , et al. Increased IL-17A expression in granulomas and in circulating memory T cells in sarcoidosis. Rheumatology (Oxford) 2012; 51 (01) 37-46
  • 58 Richmond BW, Ploetze K, Isom J. , et al. Sarcoidosis Th17 cells are ESAT-6 antigen specific but demonstrate reduced IFN-γ expression. J Clin Immunol 2013; 33 (02) 446-455
  • 59 Ostadkarampour M, Eklund A, Moller D. , et al. Higher levels of interleukin IL-17 and antigen-specific IL-17 responses in pulmonary sarcoidosis patients with Löfgren's syndrome. Clin Exp Immunol 2014; 178 (02) 342-352
  • 60 Ramstein J, Broos CE, Simpson LJ. , et al. IFN-γ-producing T-helper 17.1 cells are increased in sarcoidosis and are more prevalent than T-helper type 1 cells. Am J Respir Crit Care Med 2016; 193 (11) 1281-1291
  • 61 Tøndell A, Moen T, Børset M, Salvesen Ø, Rø AD, Sue-Chu M. Bronchoalveolar lavage fluid IFN-γ+ Th17 cells and regulatory T cells in pulmonary sarcoidosis. Mediators Inflamm 2014; 2014: 438070
  • 62 Lexberg MH, Taubner A, Albrecht I. , et al. IFN-γ and IL-12 synergize to convert in vivo generated Th17 into Th1/Th17 cells. Eur J Immunol 2010; 40 (11) 3017-3027
  • 63 Li P, Liu C, Yu Z, Wu M. New insights into regulatory T cells: exosome- and non-coding RNA-mediated regulation of homeostasis and resident Treg cells. Front Immunol 2016; 7: 574
  • 64 Bettelli E, Carrier Y, Gao W. , et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006; 441 (7090): 235-238
  • 65 Rappl G, Pabst S, Riemann D. , et al. Regulatory T cells with reduced repressor capacities are extensively amplified in pulmonary sarcoid lesions and sustain granuloma formation. Clin Immunol 2011; 140 (01) 71-83
  • 66 Miyara M, Amoura Z, Parizot C. , et al. The immune paradox of sarcoidosis and regulatory T cells. J Exp Med 2006; 203 (02) 359-370
  • 67 Broos CE, van Nimwegen M, Kleinjan A. , et al. Impaired survival of regulatory T cells in pulmonary sarcoidosis. Respir Res 2015; 16: 108
  • 68 Taflin C, Miyara M, Nochy D. , et al. FoxP3+ regulatory T cells suppress early stages of granuloma formation but have little impact on sarcoidosis lesions. Am J Pathol 2009; 174 (02) 497-508
  • 69 Saussine A, Tazi A, Feuillet S. , et al. Active chronic sarcoidosis is characterized by increased transitional blood B cells, increased IL-10-producing regulatory B cells and high BAFF levels. PLoS One 2012; 7 (08) e43588
  • 70 Kamphuis LS, van Zelm MC, Lam KH. , et al. Perigranuloma localization and abnormal maturation of B cells: emerging key players in sarcoidosis?. Am J Respir Crit Care Med 2013; 187 (04) 406-416
  • 71 Ueda-Hayakawa I, Tanimura H, Osawa M. , et al. Elevated serum BAFF levels in patients with sarcoidosis: association with disease activity. Rheumatology (Oxford) 2013; 52 (09) 1658-1666
  • 72 Lee NS, Barber L, Akula SM, Sigounas G, Kataria YP, Arce S. Disturbed homeostasis and multiple signaling defects in the peripheral blood B-cell compartment of patients with severe chronic sarcoidosis. Clin Vaccine Immunol 2011; 18 (08) 1306-1316
  • 73 Cinetto F, Compagno N, Scarpa R, Malipiero G, Agostini C. Rituximab in refractory sarcoidosis: a single centre experience. Clin Mol Allergy 2015; 13 (01) 19
  • 74 Cragg MS, Walshe CA, Ivanov AO, Glennie MJ. The biology of CD20 and its potential as a target for mAb therapy. Curr Dir Autoimmun 2005; 8: 140-174
  • 75 Krause ML, Cooper LT, Chareonthaitawee P, Amin S. Successful use of rituximab in refractory cardiac sarcoidosis. Rheumatology (Oxford) 2016; 55 (01) 189-191
  • 76 Beccastrini E, Vannozzi L, Bacherini D, Squatrito D, Emmi L. Successful treatment of ocular sarcoidosis with rituximab. Ocul Immunol Inflamm 2013; 21 (03) 244-246
  • 77 Belkhou A, Younsi R, El Bouchti I, El Hassani S. Rituximab as a treatment alternative in sarcoidosis. Joint Bone Spine 2008; 75 (04) 511-512
  • 78 Agrawal R, Kee AR, Ang L. , et al. Tuberculosis or sarcoidosis: opposite ends of the same disease spectrum?. Tuberculosis (Edinb) 2016; 98: 21-26
  • 79 Esteves T, Aparicio G, Garcia-Patos V. Is there any association between sarcoidosis and infectious agents?: a systematic review and meta-analysis. BMC Pulm Med 2016; 16 (01) 165
  • 80 Newman LS. Metals that cause sarcoidosis. Semin Respir Infect 1998; 13 (03) 212-220
  • 81 Rafnsson V, Ingimarsson O, Hjalmarsson I, Gunnarsdottir H. Association between exposure to crystalline silica and risk of sarcoidosis. Occup Environ Med 1998; 55 (10) 657-660
  • 82 Drent M, Bomans PH, Van Suylen RJ, Lamers RJ, Bast A, Wouters EF. Association of man-made mineral fibre exposure and sarcoidlike granulomas. Respir Med 2000; 94 (08) 815-820
  • 83 Mortaz E, Adcock IM, Barnes PJ. Sarcoidosis: role of non-tuberculosis mycobacteria and Mycobacterium tuberculosis . Int J Mycobacteriol 2014; 3 (04) 225-229
  • 84 Gupta D, Agarwal R, Aggarwal AN, Jindal SK. Molecular evidence for the role of mycobacteria in sarcoidosis: a meta-analysis. Eur Respir J 2007; 30 (03) 508-516
  • 85 Fang C, Huang H, Xu Z. Immunological evidence for the role of mycobacteria in sarcoidosis: a meta-analysis. PLoS One 2016; 11 (08) e0154716
  • 86 Brownell I, Ramírez-Valle F, Sanchez M, Prystowsky S. Evidence for mycobacteria in sarcoidosis. Am J Respir Cell Mol Biol 2011; 45 (05) 899-905
  • 87 Song Z, Marzilli L, Greenlee BM. , et al. Mycobacterial catalase-peroxidase is a tissue antigen and target of the adaptive immune response in systemic sarcoidosis. J Exp Med 2005; 201 (05) 755-767
  • 88 Chen ES, Wahlström J, Song Z. , et al. T cell responses to mycobacterial catalase-peroxidase profile a pathogenic antigen in systemic sarcoidosis. J Immunol 2008; 181 (12) 8784-8796
  • 89 Oswald-Richter KA, Culver DA, Hawkins C. , et al. Cellular responses to mycobacterial antigens are present in bronchoalveolar lavage fluid used in the diagnosis of sarcoidosis. Infect Immun 2009; 77 (09) 3740-3748
  • 90 Drake WP, Dhason MS, Nadaf M. , et al. Cellular recognition of Mycobacterium tuberculosis ESAT-6 and KatG peptides in systemic sarcoidosis. Infect Immun 2007; 75 (01) 527-530
  • 91 Oswald-Richter KA, Beachboard DC, Zhan X. , et al. Multiple mycobacterial antigens are targets of the adaptive immune response in pulmonary sarcoidosis. Respir Res 2010; 11: 161
  • 92 Dubaniewicz A, Trzonkowski P, Dubaniewicz-Wybieralska M, Dubaniewicz A, Singh M, Myśliwski A. Mycobacterial heat shock protein-induced blood T lymphocytes subsets and cytokine pattern: comparison of sarcoidosis with tuberculosis and healthy controls. Respirology 2007; 12 (03) 346-354
  • 93 Carlisle J, Evans W, Hajizadeh R. , et al. Multiple Mycobacterium antigens induce interferon-gamma production from sarcoidosis peripheral blood mononuclear cells. Clin Exp Immunol 2007; 150 (03) 460-468
  • 94 Vieira AP, Trindade MA, Pagliari C. , et al. Development of type 2, but not type 1, leprosy reactions is associated with a severe reduction of circulating and in situ regulatory T-cells. Am J Trop Med Hyg 2016; 94 (04) 721-727
  • 95 Walker SL, Lockwood DN. Leprosy type 1 (reversal) reactions and their management. Lepr Rev 2008; 79 (04) 372-386
  • 96 Kahawita IP, Lockwood DN. Towards understanding the pathology of erythema nodosum leprosum. Trans R Soc Trop Med Hyg 2008; 102 (04) 329-337
  • 97 Fonseca AB, Simon MD, Cazzaniga RA. , et al. The influence of innate and adaptative immune responses on the differential clinical outcomes of leprosy. Infect Dis Poverty 2017; 6 (01) 5
  • 98 Drake WP, Richmond BW, Oswald-Richter K. , et al. Effects of broad-spectrum antimycobacterial therapy on chronic pulmonary sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 2013; 30 (03) 201-211
  • 99 Drake WP, Oswald-Richter K, Richmond BW. , et al. Oral antimycobacterial therapy in chronic cutaneous sarcoidosis: a randomized, single-masked, placebo-controlled study. JAMA Dermatol 2013; 149 (09) 1040-1049
  • 100 Schupp JC, Tchaptchet S, Lützen N. , et al. Immune response to Propionibacterium acnes in patients with sarcoidosis--in vivo and in vitro. BMC Pulm Med 2015; 15: 75
  • 101 Hiramatsu J, Kataoka M, Nakata Y. , et al. Propionibacterium acnes DNA detected in bronchoalveolar lavage cells from patients with sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 2003; 20 (03) 197-203
  • 102 Abe C, Iwai K, Mikami R, Hosoda Y. Frequent isolation of Propionibacterium acnes from sarcoidosis lymph nodes. Zentralbl Bakteriol Mikrobiol Hyg [A] 1984; 256 (04) 541-547
  • 103 de Brouwer B, Veltkamp M, Wauters CA, Grutters JC, Janssen R. Propionibacterium acnes isolated from lymph nodes of patients with sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 2015; 32 (03) 271-274
  • 104 Zhou Y, Wei YR, Zhang Y, Du SS, Baughman RP, Li HP. Real-time quantitative reverse transcription-polymerase chain reaction to detect propionibacterial ribosomal RNA in the lymph nodes of Chinese patients with sarcoidosis. Clin Exp Immunol 2015; 181 (03) 511-517
  • 105 Ebe Y, Ikushima S, Yamaguchi T. , et al. Proliferative response of peripheral blood mononuclear cells and levels of antibody to recombinant protein from Propionibacterium acnes DNA expression library in Japanese patients with sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 2000; 17 (03) 256-265
  • 106 Minami J, Eishi Y, Ishige Y. , et al. Pulmonary granulomas caused experimentally in mice by a recombinant trigger-factor protein of Propionibacterium acnes . J Med Dent Sci 2003; 50 (04) 265-274
  • 107 Yorozu P, Furukawa A, Uchida K. , et al. Propionibacterium acnes catalase induces increased Th1 immune response in sarcoidosis patients. Respir Investig 2015; 53 (04) 161-169
  • 108 Eishi Y. Etiologic link between sarcoidosis and Propionibacterium acnes . Respir Investig 2013; 51 (02) 56-68
  • 109 Takemori N, Nakamura M, Kojima M, Eishi Y. Successful treatment in a case of Propionibacterium acnes-associated sarcoidosis with clarithromycin administration: a case report. J Med Case Reports 2014; 8: 15
  • 111 Goulvestre C, Batteux F, Charreire J. Chemokines modulate experimental autoimmune thyroiditis through attraction of autoreactive or regulatory T cells. Eur J Immunol 2002; 32 (12) 3435-3442
  • 111 Swanborg RH. Experimental autoimmune encephalomyelitis in the rat: lessons in T-cell immunology and autoreactivity. Immunol Rev 2001; 184: 129-135
  • 112 Balmes JR, Abraham JL, Dweik RA. , et al; ATS Ad Hoc Committee on Beryllium Sensitivity and Chronic Beryllium Disease. An official American Thoracic Society statement: diagnosis and management of beryllium sensitivity and chronic beryllium disease. Am J Respir Crit Care Med 2014; 190 (10) e34-e59
  • 113 Müller-Quernheim J, Gaede KI, Fireman E, Zissel G. Diagnoses of chronic beryllium disease within cohorts of sarcoidosis patients. Eur Respir J 2006; 27 (06) 1190-1195
  • 114 Bill JR, Mack DG, Falta MT. , et al. Beryllium presentation to CD4+ T cells is dependent on a single amino acid residue of the MHC class II beta-chain. J Immunol 2005; 175 (10) 7029-7037
  • 115 McCanlies EC, Ensey JS, Schuler CR, Kreiss K, Weston A. The association between HLA-DPB1Glu69 and chronic beryllium disease and beryllium sensitization. Am J Ind Med 2004; 46 (02) 95-103
  • 116 McCanlies EC, Kreiss K, Andrew M, Weston A. HLA-DPB1 and chronic beryllium disease: a HuGE review. Am J Epidemiol 2003; 157 (05) 388-398
  • 117 Kelleher P, Pacheco K, Newman LS. Inorganic dust pneumonias: the metal-related parenchymal disorders. Environ Health Perspect 2000; 108 (Suppl. 04) 685-696
  • 118 Cao M, Cai HR, Meng FQ, Wei JY. Pulmonary sarcoidlike granulomatosis induced by aluminum dust: a case report and literature review [in Chinese]. Zhonghua Jie He He Hu Xi Za Zhi 2008; 31 (06) 406-409
  • 119 Chen WJ, Monnat Jr RJ, Chen M, Mottet NK. Aluminum induced pulmonary granulomatosis. Hum Pathol 1978; 9 (06) 705-711
  • 120 Tomioka H, Kaneda T, Katsuyama E, Kitaichi M, Moriyama H, Suzuki E. Elemental analysis of occupational granulomatous lung disease by electron probe microanalyzer with wavelength dispersive spectrometer: Two case reports. Respir Med Case Rep 2016; 18: 66-72
  • 121 Deubelbeiss U, Gemperli A, Schindler C, Baty F, Brutsche MH. Prevalence of sarcoidosis in Switzerland is associated with environmental factors. Eur Respir J 2010; 35 (05) 1088-1097
  • 122 Schmidt M, Goebeler M. Immunology of metal allergies. J Dtsch Dermatol Ges 2015; 13 (07) 653-660
  • 123 Yun J, Cai F, Lee FJ, Pichler WJ. T-cell-mediated drug hypersensitivity: immune mechanisms and their clinical relevance. Asia Pac Allergy 2016; 6 (02) 77-89
  • 124 Clayton GM, Wang Y, Crawford F. , et al. Structural basis of chronic beryllium disease: linking allergic hypersensitivity and autoimmunity. Cell 2014; 158 (01) 132-142
  • 125 Petukh M, Wu B, Stefl S. , et al. Chronic Beryllium disease: revealing the role of beryllium ion and small peptides binding to HLA-DP2. PLoS One 2014; 9 (11) e111604
  • 126 Falta MT, Pinilla C, Mack DG. , et al. Identification of beryllium-dependent peptides recognized by CD4+ T cells in chronic beryllium disease. J Exp Med 2013; 210 (07) 1403-1418
  • 127 Roney K, Holl E, Ting J. Immune plexins and semaphorins: old proteins, new immune functions. Protein Cell 2013; 4 (01) 17-26
  • 128 Hamilton Jr RF, Thakur SA, Holian A. Silica binding and toxicity in alveolar macrophages. Free Radic Biol Med 2008; 44 (07) 1246-1258
  • 129 Pavan C, Fubini B. Unveiling the variability of “Quartz Hazard” in light of recent toxicological findings. Chem Res Toxicol 2017; 30 (01) 469-485
  • 130 Leung CC, Yu IT, Chen W. Silicosis. Lancet 2012; 379 (9830): 2008-2018
  • 131 Calvert GM, Rice FL, Boiano JM, Sheehy JW, Sanderson WT. Occupational silica exposure and risk of various diseases: an analysis using death certificates from 27 states of the United States. Occup Environ Med 2003; 60 (02) 122-129
  • 132 Checchi L, Nucci MC, Gatti AM, Mattia D, Violante FS. Sarcoidosis in a dental surgeon: a case report. J Med Case Reports 2010; 4: 259
  • 133 Kawano-Dourado LB, Carvalho CR, Santos UP. , et al. Tunnel excavation triggering pulmonary sarcoidosis. Am J Ind Med 2012; 55 (04) 390-394
  • 134 Drent M, Wijnen PA, Boots AW, Bast A. Cat litter is a possible trigger for sarcoidosis. Eur Respir J 2012; 39 (01) 221-222
  • 135 Solà R, Boj M, Hernandez-Flix S, Camprubí M. Silica in oral drugs as a possible sarcoidosis-inducing antigen. Lancet 2009; 373 (9679): 1943-1944
  • 136 Fireman E, Shai AB, Alcalay Y, Ophir N, Kivity S, Stejskal V. Identification of metal sensitization in sarcoid-like metal-exposed patients by the MELISA® lymphocyte proliferation test - a pilot study. J Occup Med Toxicol 2016; 11: 18
  • 137 Friedetzky A, Garn H, Kirchner A, Gemsa D. Histopathological changes in enlarged thoracic lymph nodes during the development of silicosis in rats. Immunobiology 1998; 199 (01) 119-132
  • 138 Ye RD, Sun L. Emerging functions of serum amyloid A in inflammation. J Leukoc Biol 2015; 98 (06) 923-929
  • 139 Ivanišević J, Kotur-Stevuljević J, Stefanović A. , et al. Association of serum amyloid A and oxidative stress with paraoxonase 1 in sarcoidosis patients. Eur J Clin Invest 2016; 46 (05) 418-424
  • 140 Gungor S, Ozseker F, Yalcinsoy M. , et al. Conventional markers in determination of activity of sarcoidosis. Int Immunopharmacol 2015; 25 (01) 174-179
  • 141 Bargagli E, Magi B, Olivieri C, Bianchi N, Landi C, Rottoli P. Analysis of serum amyloid A in sarcoidosis patients. Respir Med 2011; 105 (05) 775-780
  • 142 Chen ES, Song Z, Willett MH. , et al. Serum amyloid A regulates granulomatous inflammation in sarcoidosis through Toll-like receptor-2. Am J Respir Crit Care Med 2010; 181 (04) 360-373
  • 143 Chen ES, Moller DR. Etiologies of sarcoidosis. Clin Rev Allergy Immunol 2015; 49 (01) 6-18
  • 144 Chen ES, Moller DR. Sarcoidosis--scientific progress and clinical challenges. Nat Rev Rheumatol 2011; 7 (08) 457-467
  • 145 Salazar A, Maña J, Fiol C. , et al. Influence of serum amyloid A on the decrease of high density lipoprotein-cholesterol in active sarcoidosis. Atherosclerosis 2000; 152 (02) 497-502
  • 146 Mak TN, Brüggemann H. Vimentin in bacterial infections. Cells 2016; 5 (02) . pii:E18; DOI: 10.3390/cells5020018.
  • 147 Cain H, Kraus B. Immunofluorescence microscopic demonstration of vimentin filaments in asteroid bodies of sarcoidosis. A comparison with electron microscopic findings. Virchows Arch B Cell Pathol Incl Mol Pathol 1983; 42 (02) 213-226
  • 148 Wahlström J, Dengjel J, Persson B. , et al. Identification of HLA-DR-bound peptides presented by human bronchoalveolar lavage cells in sarcoidosis. J Clin Invest 2007; 117 (11) 3576-3582
  • 149 Wahlström J, Dengjel J, Winqvist O. , et al. Autoimmune T cell responses to antigenic peptides presented by bronchoalveolar lavage cell HLA-DR molecules in sarcoidosis. Clin Immunol 2009; 133 (03) 353-363
  • 150 Grunewald J, Kaiser Y, Ostadkarampour M. , et al. T-cell receptor-HLA-DRB1 associations suggest specific antigens in pulmonary sarcoidosis. Eur Respir J 2016; 47 (03) 898-909
  • 151 Eberhardt C, Thillai M, Parker R. , et al. Proteomic analysis of Kveim reagent identifies targets of cellular immunity in sarcoidosis. PLoS One 2017; 12 (01) e0170285