J Knee Surg 2017; 30(07): 704-711
DOI: 10.1055/s-0036-1597618
Original Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

A Canine Arthroscopic Anterior Cruciate Ligament Reconstruction Model for Study of Synthetic Augmentation of Tendon Allografts

James L. Cook
1   Thompson Laboratory for Regenerative Orthopaedics, Missouri Orthopaedic Institute, University of Missouri, Columbia, Missouri
2   Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
,
Pat Smith
2   Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
3   Columbia Orthopedic Group, Columbia, Missouri
,
James P. Stannard
1   Thompson Laboratory for Regenerative Orthopaedics, Missouri Orthopaedic Institute, University of Missouri, Columbia, Missouri
2   Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
,
Ferris Pfeiffer
2   Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
3   Columbia Orthopedic Group, Columbia, Missouri
,
Keiichi Kuroki
1   Thompson Laboratory for Regenerative Orthopaedics, Missouri Orthopaedic Institute, University of Missouri, Columbia, Missouri
,
Chantelle C. Bozynski
1   Thompson Laboratory for Regenerative Orthopaedics, Missouri Orthopaedic Institute, University of Missouri, Columbia, Missouri
2   Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
,
Cristi Cook
2   Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
› Author Affiliations
Further Information

Publication History

14 October 2016

14 November 2016

Publication Date:
26 December 2016 (online)

Abstract

Novel graft types, fixation methods, and means for augmenting anterior cruciate ligament (ACL) reconstructions require preclinical validation prior to safe and effective clinical application. The objective of this study was to describe and validate a translational canine model for all-inside arthroscopic complete ACL reconstruction using a quadriceps tendon allograft with internal brace (QTIB). With institutional approval, adult research hounds underwent complete transection of the native ACL followed by all-inside ACL reconstruction using the novel QTIB construct with suspensory fixation (n = 10). Contralateral knees were used as nonoperated controls (n = 10). Dogs were assessed over a 6-month period using functional, diagnostic imaging, gross, biomechanical, and histologic outcome measures required for preclinical animal models. Study results suggest that the novel QTIB construct used for complete ACL reconstruction can provide sustained knee stability and function without the development of premature osteoarthritis in a rigorous and valid preclinical model. The unique configuration of the QTIB construct—the combination of a tendon allograft with a synthetic suture tape internal brace—allowed for an effective biologic–synthetic load-sharing ACL construct. It prevented early failure, allowed for direct, four-zone graft-to-bone healing, and functional graft remodeling while avoiding problems noted with use of all-synthetic grafts.

 
  • References

  • 1 Ishibashi Y, Toh S, Okamura Y, Sasaki T, Kusumi T. Graft incorporation within the tibial bone tunnel after anterior cruciate ligament reconstruction with bone-patellar tendon-bone autograft. Am J Sports Med 2001; 29 (04) 473-479
  • 2 Kim S, Bosque J, Meehan JP, Jamali A, Marder R. Increase in outpatient knee arthroscopy in the United States: a comparison of National Surveys of Ambulatory Surgery, 1996 and 2006. J Bone Joint Surg Am 2011; 93 (11) 994-1000
  • 3 Cook JL, Hung CT, Kuroki K. , et al. Animal models of cartilage repair. Bone Joint Res 2014; 3 (04) 89-94
  • 4 Kondo E, Yasuda K, Katsura T, Hayashi R, Kotani Y, Tohyama H. Biomechanical and histological evaluations of the doubled semitendinosus tendon autograft after anterior cruciate ligament reconstruction in sheep. Am J Sports Med 2012; 40 (02) 315-324
  • 5 Murray MM, Fleming BC. Biology of anterior cruciate ligament injury and repair: Kappa Delta Ann Doner Vaughn award paper 2013. J Orthop Res 2013; 31 (10) 1501-1506
  • 6 Mutsuzaki H, Sakane M. Calcium phosphate-hybridized tendon graft to enhance tendon-bone healing two years after ACL reconstruction in goats. Sports Med Arthrosc Rehabil Ther Technol 2011; 3 (01) 31
  • 7 Weiler A, Hoffmann RF, Bail HJ, Rehm O, Südkamp NP. Tendon healing in a bone tunnel. Part II: histologic analysis after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep. Arthroscopy 2002; 18 (02) 124-135
  • 8 Weiler A, Peine R, Pashmineh-Azar A, Abel C, Südkamp NP, Hoffmann RF. Tendon healing in a bone tunnel. Part I: biomechanical results after biodegradable interference fit fixation in a model of anterior cruciate ligament reconstruction in sheep. Arthroscopy 2002; 18 (02) 113-123
  • 9 Cook JL, Smith PA, Stannard JP. , et al. A canine hybrid double-bundle model for study of arthroscopic ACL reconstruction. J Orthop Res 2015; 33 (08) 1171-1179
  • 10 Smith PA, Stannard JP, Pfeiffer FM, Kuroki K, Bozynski CC, Cook JL. Suspensory versus interference screw fixation for arthroscopic anterior cruciate ligament reconstruction in a translational large-animal model. Arthroscopy 2016; 32 (06) 1086-1097
  • 11 Conzemius MG, Evans RB, Besancon MF. , et al. Effect of surgical technique on limb function after surgery for rupture of the cranial cruciate ligament in dogs. J Am Vet Med Assoc 2005; 226 (02) 232-236
  • 12 Cook JL. Cranial cruciate ligament disease in dogs: biology versus biomechanics. Vet Surg 2010; 39 (03) 270-277
  • 13 Haynes KH, Biskup J, Freeman A, Conzemius MG. Effect of tibial plateau angle on cranial cruciate ligament strain: an ex vivo study in the dog. Vet Surg 2015; 44 (01) 46-49
  • 14 Lopez MJ, Borne A, Monroe WT, Bommala P, Kelly L, Zhang N. Novel anterior cruciate ligament graft fixation device reduces slippage. Med Devices (Auckl) 2013; 6: 59-68
  • 15 Lopez MJ, Markel MD. Anterior cruciate ligament rupture after thermal treatment in a canine model. Am J Sports Med 2003; 31 (02) 164-167
  • 16 Gregory MH, Capito N, Kuroki K, Stoker AM, Cook JL, Sherman SL. A review of translational animal models for knee osteoarthritis. Arthritis (Egypt) 2012; 2012: 764621
  • 17 Pond MJ, Nuki G. Experimentally-induced osteoarthritis in the dog. Ann Rheum Dis 1973; 32 (04) 387-388
  • 18 Brandt KD. Animal models of osteoarthritis. Biorheology 2002; 39 (01/02) 221-235
  • 19 Cook JL, Fox DB, Malaviya P. , et al. Long-term outcome for large meniscal defects treated with small intestinal submucosa in a dog model. Am J Sports Med 2006; 34 (01) 32-42
  • 20 Cook JL, Smith PA, Bozynski CC. , et al. Multiple injections of leukoreduced platelet rich plasma reduce pain and functional impairment in a canine model of ACL and meniscal deficiency. J Orthop Res 2016; 34 (04) 607-615
  • 21 Cook JL, Schulz KS, Karnes GJ. , et al. Clinical outcomes associated with the initial use of the Canine Unicompartmental Elbow (CUE) Arthroplasty System(®). Can Vet J 2015; 56 (09) 971-977
  • 22 Choate CJ, Lewis DD, Conrad BP, Horodyski MB, Pozzi A. Assessment of the craniocaudal stability of four extracapsular stabilization techniques during two cyclic loading protocols: a cadaver study. Vet Surg 2013; 42 (07) 853-859
  • 23 Cook JL, Luther JK, Beetem J, Karnes J, Cook CR. Clinical comparison of a novel extracapsular stabilization procedure and tibial plateau leveling osteotomy for treatment of cranial cruciate ligament deficiency in dogs. Vet Surg 2010; 39 (03) 315-323
  • 24 Lui PP, Ho G, Lee YW, Ho PY, Lo WN, Lo CK. Validation of a histologic scoring system for the examination of quality of tendon graft to bone tunnel healing in anterior cruciate ligament reconstruction. Anal Quant Cytol Histol 2011; 33 (01) 36-49
  • 25 US Food and Drug Administration. Guidance for Industry: Preparation of IDEs and INDs for Products Intended to Repair or Replace Knee Cartilage. Washington, DC: US Food and Drug Administration; 2011
  • 26 International ASTM F2451-05. Standard Guide for In Vivo Assessment of Implantable Devices Intended to Repair or Regenerate Articular Cartilage. Vol F2451. West Conshohocken, PA: ASTM International; 2010
  • 27 Iliadis DP, Bourlos DN, Mastrokalos DS, Chronopoulos E, Babis GC. LARS artificial ligament versus ABC purely polyester ligament for anterior cruciate ligament reconstruction. Orthop J Sports Med 2016; 4 (06) 2325967116653359
  • 28 Tiefenboeck TM, Thurmaier E, Tiefenboeck MM. , et al. Clinical and functional outcome after anterior cruciate ligament reconstruction using the LARS™ system at a minimum follow-up of 10 years. Knee 2015; 22 (06) 565-568
  • 29 Batty LM, Norsworthy CJ, Lash NJ, Wasiak J, Richmond AK, Feller JA. Synthetic devices for reconstructive surgery of the cruciate ligaments: a systematic review. Arthroscopy 2015; 31 (05) 957-968
  • 30 Vavken P, Murray MM. Translational studies in anterior cruciate ligament repair. Tissue Eng Part B Rev 2010; 16 (01) 5-11
  • 31 Proffen BL, McElfresh M, Fleming BC, Murray MM. A comparative anatomical study of the human knee and six animal species. Knee 2012; 19 (04) 493-499