CC BY ND NC 4.0 · SynOpen 2018; 02(02): 0105-0113
DOI: 10.1055/s-0036-1591977
paper
Copyright with the author

One-pot Synthesis of 2-Substituted 4H-Chromeno[3,4-d]oxazol-4-ones from 4-Hydroxy-3-nitrocoumarin and Acids in the Presence of Triphenylphosphine and Phosphorus Pentoxide under Microwave Irradiation

T. D. Balalas
a  Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece   Email: klitinas@chem.auth.gr
,
G. Stratidis
a  Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece   Email: klitinas@chem.auth.gr
,
D. Papatheodorou
a  Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece   Email: klitinas@chem.auth.gr
,
E.-E. Vlachou
a  Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece   Email: klitinas@chem.auth.gr
,
C. Gabriel
b  Center for Research of the Structure of Matter, Magnetic Resonance Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece
,
D. J. Hadjipavlou-Litina
c  Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
,
K. E. Litinas*
a  Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece   Email: klitinas@chem.auth.gr
› Author Affiliations
Further Information

Publication History

Received: 31 January 2018

Accepted after revision: 13 March 2018

Publication Date:
17 April 2018 (online)

Abstract

2-Substituted 4H-chromeno[3,4-d]oxazol-4-ones are prepared from 4-hydroxy-3-nitrocoumarin and acids by one-pot reaction in the presence of PPh3 and P2O5 under microwave irradiation or by one-pot two-step reactions in the presence of Pd/C and hydrogen and then P2O5 under microwave irradiation. The fused oxazolocoumarins were also synthesized from 3-amido-4-hydroxycoumarins and P2O5 under microwave irradiation. The 3-amido-4-hydroxycoumarins are obtained almost quantitatively from 4-hydroxy-3-nitrocoumarin, acids and PPh3 under microwave irradiation, or in the presence of Pd/C and H2 on heating. Preliminary biological tests indicate significant inhibition of soybean lipoxygenase and antilipid peroxidation for both oxazolocoumarins and o-hydroxyamidocoumarins.

Supporting Information

 
  • References

    • 1a Murray DH. Mendez J. Brown SA. The Natural Coumarins: Occurrence, Chemistry and Biochemistry . J. Wiley; New York: 1982
    • 1b O’Kennedy R. Thornes RD. Coumarins: Biology, Applications and Mode of Action . Wiley; Chichester: 1997
    • 1c Yu DL. Suzuki M. Xie L. Morris-Natsche SL. Lee KH. Med. Res. Rev. 2003; 23: 322
    • 1d Fylaktakidou KC. Hadjipavlou-Litina DJ. Litinas KE. Nicolaides DN. Curr. Pharm. Des. 2004; 10: 3813
    • 1e Santana L. Uriarte E. Roleira F. Milhazes N. Borges F. Curr. Med. Chem. 2004; 11: 3239
    • 1f Lacy A. O’Kennedy R. Curr. Pharm. Des. 2004; 10: 3797
    • 1g Zhang X.-S. Li Z.-W. Shi Z.-J. Org. Chem. Front. 2014; 1: 44
    • 1h Medina FG. Marrero JG. Alonso MM. González MC. Córdova-Guerrero I. García AG. T. Osegueda-Robles S. Nat. Prod. Rep. 2015; 32: 1472
  • 2 Sahoo SS. Shukla S. Nandy S. Sahoo HB. Eur. J. Exp. Biol. 2012; 2: 899
  • 3 Kontogiorgis C. Hadjipavlou-Litina D. J. Enzyme Inhib. Med. Chem. 2003; 18: 63
  • 4 Prasanna B. Sandeep A. Revathi T. World J. Pharm. Pharm. Sci. 2014; 3: 404
  • 5 Pathak MA. Fellman JH. Kaufman KD. J. Invest. Dermatol. 1960; 35: 165
  • 6 Colotta V. Catarzi D. Varano F. Cecchi L. Filacchioni G. Martini C. Giusti L. Lucacchini A. Il Farmaco 1998; 53: 375
    • 7a Soares AM. S. Hungeford G. Goncalves MS. T. Costa SP. G. New J. Chem. 2017; 41: 2997
    • 7b Soares AM. S. Hungeford G. Costa SP. G. Goncalves MS. T. Dyes Pigm. 2017; 137: 91
    • 7c Soares AM. S. Piloto AM. Hungeford G. Costa SP. G. Goncalves MS. T. Eur. J. Org. Chem. 2012; 922
    • 7d Soares AM. S. Costa SP. G. Goncalves MS. T. Tetrahedron 2010; 66: 8189
  • 8 Matos MJ. Gaspar A. Kachler S. Klotz K.-N. Borges F. Santana L. Uriarte E. J. Pharm. Pharmacol. 2013; 65: 30
  • 9 Danis O. Yuce-Dursun B. Gunduz C. Ogan A. Sener G. Bulut M. Yarat A. Arzneim. Forsch. 2010; 60: 617
  • 10 Radanyi C. Le Bras G. Messaoudi S. Bouclier C. Peyrat J.-F. Brion J.-D. Marsaud V. Renoir J.-M. Alami M. Bioorg. Med. Chem. Lett. 2008; 18: 2495
  • 11 Patonay T. Litkei GY. Bognar R. Erdei J. Miszti C. Pharmazie 1984; 39: 86
  • 12 Nofal ZM. El-Zahar MI. Abd El-Karim SS. Molecules 2000; 5: 99
    • 13a Sharma H. Singh N. Jang DO. Green Chem. 2014; 16: 4922
    • 13b Mohammadpoor-Baltork I. Khosropour AR. Hojati SF. Monatsh. Chem. 2007; 138: 663
    • 13c Yamamoto K. Watanabe H. Chem. Lett. 1982; 11: 1225
    • 13d Maleki B. Baghayeri M. Vahdat SM. Mohhamadzadeh A. Akhoondi S. RSC Adv. 2015; 5: 46545
    • 13e Khalafi-Nezhad A. Panahi F. ACS Catal. 2014; 4: 1686
    • 13f Mayo MS. Yu X. Zhou X. Feng X. Yamamoto Y. Bao M. J. Org. Chem. 2014; 79: 6310
    • 14a Rambabu D. Murthi PR. K. Dulla b. Rao MV. B. Pal M. Synth. Commun. 2013; 43: 3083
    • 14b Li K.-L. Du Z.-B. Guo C.-C. Chen Q.-Y. J. Org. Chem. 2009; 74: 3286
    • 14c Doeller W. Ber. Dtsch. Chem. Ges. B. 1939; 72: 2148
    • 14d Phillips MA. J. Chem. Soc. 1930; 2685
    • 15a Jadhav J. Gaikwad V. Kurane R. Salunkhe R. Rashinkar G. Tetrahedron 2013; 69: 2920
    • 15b Saha P. Ramana T. Purkait N. Ali MA. Paul r. Punniyamurthy T. J. Org. Chem. 2009; 74: 8719
    • 15c Evindar G. Batey RA. J. Org. Chem. 2006; 71: 1802
    • 15d Altenhoff G. Glorius F. Adv. Synth. Catal. 2004; 346: 1661
  • 16 Cheung CW. Buchwald SL. J. Org. Chem. 2012; 77: 7526
  • 17 Ueda S. Nagasawa H. J. Org. Chem. 2009; 74: 4272
  • 18 Tang L. Guo X. Yang Y. Zha Z. Wang Z. Chem. Commun. 2014; 6145
  • 19 Feng F. Ye J. Cheng Z. Xu X. Zhang Q. Ma L. Lu C. Li X. RSC Adv. 2016; 6: 72750
  • 20 Lee JJ. Kim J. Jun JM. Lee BM. Kim BH. Tetrahedron 2009; 65: 8821
  • 21 Ryuzaburo N. Watanabe H. Kuwata S. Yokoyama S. Yakugaku Zasshi 1959; 79: 1378; Chem. Abstr. 1960, 10936
  • 22 Reddy S. J. Indian Chem. Soc. 1981; 58: 599
    • 23a Dallacker F. Kratzer P. Lipp M. Justus Liebigs Ann. Chem. 1961; 643: 97
    • 23b Stammer CH. J. Org. Chem. 1960; 25: 460
    • 23c Hinman JW. Caron EL. Hoeksema H. J. Am. Chem. Soc. 1957; 79: 3789
  • 24 Gammon DW. Hunter R. Wilson SA. Tetrahedron 2005; 61: 10683
  • 25 Saikachi H. Ichikawa M. Chem. Pharm. Bull. 1966; 14: 1162
  • 26 Chantegrel B. Nadi AI. Gelin S. J. Org. Chem. 1984; 49: 4424
  • 27 Lee YR. Suk JY. Kim BS. Tetrahedron Lett. 1999; 40: 6603
  • 28 Kaufman KD. McBride DW. Eaton DC. J. Org. Chem. 1965; 30: 4344
  • 29 Abdelghani S. Abd El-Aal A. Shehab W. El-Mobayed M. Synthesis 2003; 1373
  • 30 Bezergiannidou-Balouctsi C. Litinas KE. Malamidou-Xenikaki E. Nicolaides DN. Mentzafos D. Terzis A. Tetrahedron 1993; 49: 9127
  • 31 Vlachou E.-EN. Armatas GS. Litinas KE. J. Heterocycl. Chem. 2017; 54: 2447
    • 32a Staudinger H. Meyer J. Helv. Chim. Acta 1919; 2: 635
    • 32b Pal B. Jaisankar P. Giri VS. Synth. Commun. 2004; 34: 1317
  • 33 Humphrey RE. McGrary AL. Webb RM. Talanta 1965; 12: 727
  • 34 Bellale EV. Chaudhari MK. Akamanchi KG. Synthesis 2009; 3211
  • 35 Erden I. Gartner C. Azimi MS. Org. Lett. 2009; 11: 3986
  • 36 Carles J. Fliszar S. Can. J. Chem. 1969; 47: 1113
    • 37a Mustafa AH. Malakar CC. Ajaar N. Merisor E. Conrad J. Beifuss U. Synlett 2013; 24: 1573
    • 37b Creencia EC. Kosaka M. Muramatsu T. Kobayashi M. Oizuka T. Horaguchi T. J. Heterocycl. Chem. 2009; 46: 1309
    • 37c Sanz R. Escribano J. Pedrosa MR. Aguado R. Arnaiz FJ. Adv. Synth. Catal. 2007; 349: 713
    • 37d Freeman AW. Urvoy M. Criswell ME. J. Org. Chem. 2005; 70: 5014
    • 37e Scott PH. Smith CP. Kober E. Churchill JW. Tetrahedron Lett. 1970; 1153
    • 37f Cadogan JI. G. Cameron-Wood M. Mackie RK. Searle RJ. G. J. Chem. Soc. 1965; 4831
  • 38 Odum RA. Brenner M. J. Am. Chem. Soc. 1966; 88: 2074
  • 39 Kaneko C. Yamamori M. Yamamoto A. Hayashi R. Tetrahedron Lett. 1978; 31: 2799
  • 40 Iaroshenko VO. Mkrtchyan S. Gevorgyan A. Vilches-Herrera M. Sevenard DV. Villinger A. Ghochikyan TV. Saghiyan A. Sosnovskikh VY. Lange P. Tetrahedron 2012; 68: 2532
  • 41 VanVliet DS. Gillespie P. Scicinski JJ. Tetrahedron Lett. 2005; 46: 6741
  • 42 http://www.inchem.org/documents/icsc/icsc/eics0485.htm.
  • 43 Kameda A. Nishimori H. Omura S. Koike M. Hino T. Jobashi T. Maeyama K. Yonezawa N. Nippon Kagaku Kaishi 2002; 211
  • 44 Reppel L. Schmollak W. Arch. Pharm. 1964; 297: 45
  • 45 Balalas T. Abdul-Sada A. Hadjipavlou-Litina DJ. Litinas KE. Synthesis 2017; 49: 2575
  • 46 https://pubchem.ncbi.nlm.nih.gov/compound/54738232#section.
  • 47 Wang Z.-M. Xie S.-S. Li X.-M. Wu J.-J. Wang X.-B. Kong L.-Y. RSC Adv. 2015; 5: 70395