CC BY ND NC 4.0 · SynOpen 2018; 02(02): 0105-0113
DOI: 10.1055/s-0036-1591977
paper
Copyright with the author

One-pot Synthesis of 2-Substituted 4H-Chromeno[3,4-d]oxazol-4-ones from 4-Hydroxy-3-nitrocoumarin and Acids in the Presence of Triphenylphosphine and Phosphorus Pentoxide under Microwave Irradiation

T. D. Balalas
Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece   Email: klitinas@chem.auth.gr
,
G. Stratidis
Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece   Email: klitinas@chem.auth.gr
,
D. Papatheodorou
Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece   Email: klitinas@chem.auth.gr
,
E.-E. Vlachou
Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece   Email: klitinas@chem.auth.gr
,
C. Gabriel
Center for Research of the Structure of Matter, Magnetic Resonance Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece
,
D. J. Hadjipavlou-Litina
Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
,
K. E. Litinas*
Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece   Email: klitinas@chem.auth.gr
› Author Affiliations
Further Information

Publication History

Received: 31 January 2018

Accepted after revision: 13 March 2018

Publication Date:
17 April 2018 (online)

Abstract

2-Substituted 4H-chromeno[3,4-d]oxazol-4-ones are prepared from 4-hydroxy-3-nitrocoumarin and acids by one-pot reaction in the presence of PPh3 and P2O5 under microwave irradiation or by one-pot two-step reactions in the presence of Pd/C and hydrogen and then P2O5 under microwave irradiation. The fused oxazolocoumarins were also synthesized from 3-amido-4-hydroxycoumarins and P2O5 under microwave irradiation. The 3-amido-4-hydroxycoumarins are obtained almost quantitatively from 4-hydroxy-3-nitrocoumarin, acids and PPh3 under microwave irradiation, or in the presence of Pd/C and H2 on heating. Preliminary biological tests indicate significant inhibition of soybean lipoxygenase and antilipid peroxidation for both oxazolocoumarins and o-hydroxyamidocoumarins.

Supporting Information

 
  • References

    • 1a Murray DH. Mendez J. Brown SA. The Natural Coumarins: Occurrence, Chemistry and Biochemistry . J. Wiley; New York: 1982
    • 1b O’Kennedy R. Thornes RD. Coumarins: Biology, Applications and Mode of Action . Wiley; Chichester: 1997
    • 1c Yu DL. Suzuki M. Xie L. Morris-Natsche SL. Lee KH. Med. Res. Rev. 2003; 23: 322
    • 1d Fylaktakidou KC. Hadjipavlou-Litina DJ. Litinas KE. Nicolaides DN. Curr. Pharm. Des. 2004; 10: 3813
    • 1e Santana L. Uriarte E. Roleira F. Milhazes N. Borges F. Curr. Med. Chem. 2004; 11: 3239
    • 1f Lacy A. O’Kennedy R. Curr. Pharm. Des. 2004; 10: 3797
    • 1g Zhang X.-S. Li Z.-W. Shi Z.-J. Org. Chem. Front. 2014; 1: 44
    • 1h Medina FG. Marrero JG. Alonso MM. González MC. Córdova-Guerrero I. García AG. T. Osegueda-Robles S. Nat. Prod. Rep. 2015; 32: 1472
  • 2 Sahoo SS. Shukla S. Nandy S. Sahoo HB. Eur. J. Exp. Biol. 2012; 2: 899
  • 3 Kontogiorgis C. Hadjipavlou-Litina D. J. Enzyme Inhib. Med. Chem. 2003; 18: 63
  • 4 Prasanna B. Sandeep A. Revathi T. World J. Pharm. Pharm. Sci. 2014; 3: 404
  • 5 Pathak MA. Fellman JH. Kaufman KD. J. Invest. Dermatol. 1960; 35: 165
  • 6 Colotta V. Catarzi D. Varano F. Cecchi L. Filacchioni G. Martini C. Giusti L. Lucacchini A. Il Farmaco 1998; 53: 375
    • 7a Soares AM. S. Hungeford G. Goncalves MS. T. Costa SP. G. New J. Chem. 2017; 41: 2997
    • 7b Soares AM. S. Hungeford G. Costa SP. G. Goncalves MS. T. Dyes Pigm. 2017; 137: 91
    • 7c Soares AM. S. Piloto AM. Hungeford G. Costa SP. G. Goncalves MS. T. Eur. J. Org. Chem. 2012; 922
    • 7d Soares AM. S. Costa SP. G. Goncalves MS. T. Tetrahedron 2010; 66: 8189
  • 8 Matos MJ. Gaspar A. Kachler S. Klotz K.-N. Borges F. Santana L. Uriarte E. J. Pharm. Pharmacol. 2013; 65: 30
  • 9 Danis O. Yuce-Dursun B. Gunduz C. Ogan A. Sener G. Bulut M. Yarat A. Arzneim. Forsch. 2010; 60: 617
  • 10 Radanyi C. Le Bras G. Messaoudi S. Bouclier C. Peyrat J.-F. Brion J.-D. Marsaud V. Renoir J.-M. Alami M. Bioorg. Med. Chem. Lett. 2008; 18: 2495
  • 11 Patonay T. Litkei GY. Bognar R. Erdei J. Miszti C. Pharmazie 1984; 39: 86
  • 12 Nofal ZM. El-Zahar MI. Abd El-Karim SS. Molecules 2000; 5: 99
    • 13a Sharma H. Singh N. Jang DO. Green Chem. 2014; 16: 4922
    • 13b Mohammadpoor-Baltork I. Khosropour AR. Hojati SF. Monatsh. Chem. 2007; 138: 663
    • 13c Yamamoto K. Watanabe H. Chem. Lett. 1982; 11: 1225
    • 13d Maleki B. Baghayeri M. Vahdat SM. Mohhamadzadeh A. Akhoondi S. RSC Adv. 2015; 5: 46545
    • 13e Khalafi-Nezhad A. Panahi F. ACS Catal. 2014; 4: 1686
    • 13f Mayo MS. Yu X. Zhou X. Feng X. Yamamoto Y. Bao M. J. Org. Chem. 2014; 79: 6310
    • 14a Rambabu D. Murthi PR. K. Dulla b. Rao MV. B. Pal M. Synth. Commun. 2013; 43: 3083
    • 14b Li K.-L. Du Z.-B. Guo C.-C. Chen Q.-Y. J. Org. Chem. 2009; 74: 3286
    • 14c Doeller W. Ber. Dtsch. Chem. Ges. B. 1939; 72: 2148
    • 14d Phillips MA. J. Chem. Soc. 1930; 2685
    • 15a Jadhav J. Gaikwad V. Kurane R. Salunkhe R. Rashinkar G. Tetrahedron 2013; 69: 2920
    • 15b Saha P. Ramana T. Purkait N. Ali MA. Paul r. Punniyamurthy T. J. Org. Chem. 2009; 74: 8719
    • 15c Evindar G. Batey RA. J. Org. Chem. 2006; 71: 1802
    • 15d Altenhoff G. Glorius F. Adv. Synth. Catal. 2004; 346: 1661
  • 16 Cheung CW. Buchwald SL. J. Org. Chem. 2012; 77: 7526
  • 17 Ueda S. Nagasawa H. J. Org. Chem. 2009; 74: 4272
  • 18 Tang L. Guo X. Yang Y. Zha Z. Wang Z. Chem. Commun. 2014; 6145
  • 19 Feng F. Ye J. Cheng Z. Xu X. Zhang Q. Ma L. Lu C. Li X. RSC Adv. 2016; 6: 72750
  • 20 Lee JJ. Kim J. Jun JM. Lee BM. Kim BH. Tetrahedron 2009; 65: 8821
  • 21 Ryuzaburo N. Watanabe H. Kuwata S. Yokoyama S. Yakugaku Zasshi 1959; 79: 1378; Chem. Abstr. 1960, 10936
  • 22 Reddy S. J. Indian Chem. Soc. 1981; 58: 599
    • 23a Dallacker F. Kratzer P. Lipp M. Justus Liebigs Ann. Chem. 1961; 643: 97
    • 23b Stammer CH. J. Org. Chem. 1960; 25: 460
    • 23c Hinman JW. Caron EL. Hoeksema H. J. Am. Chem. Soc. 1957; 79: 3789
  • 24 Gammon DW. Hunter R. Wilson SA. Tetrahedron 2005; 61: 10683
  • 25 Saikachi H. Ichikawa M. Chem. Pharm. Bull. 1966; 14: 1162
  • 26 Chantegrel B. Nadi AI. Gelin S. J. Org. Chem. 1984; 49: 4424
  • 27 Lee YR. Suk JY. Kim BS. Tetrahedron Lett. 1999; 40: 6603
  • 28 Kaufman KD. McBride DW. Eaton DC. J. Org. Chem. 1965; 30: 4344
  • 29 Abdelghani S. Abd El-Aal A. Shehab W. El-Mobayed M. Synthesis 2003; 1373
  • 30 Bezergiannidou-Balouctsi C. Litinas KE. Malamidou-Xenikaki E. Nicolaides DN. Mentzafos D. Terzis A. Tetrahedron 1993; 49: 9127
  • 31 Vlachou E.-EN. Armatas GS. Litinas KE. J. Heterocycl. Chem. 2017; 54: 2447
    • 32a Staudinger H. Meyer J. Helv. Chim. Acta 1919; 2: 635
    • 32b Pal B. Jaisankar P. Giri VS. Synth. Commun. 2004; 34: 1317
  • 33 Humphrey RE. McGrary AL. Webb RM. Talanta 1965; 12: 727
  • 34 Bellale EV. Chaudhari MK. Akamanchi KG. Synthesis 2009; 3211
  • 35 Erden I. Gartner C. Azimi MS. Org. Lett. 2009; 11: 3986
  • 36 Carles J. Fliszar S. Can. J. Chem. 1969; 47: 1113
    • 37a Mustafa AH. Malakar CC. Ajaar N. Merisor E. Conrad J. Beifuss U. Synlett 2013; 24: 1573
    • 37b Creencia EC. Kosaka M. Muramatsu T. Kobayashi M. Oizuka T. Horaguchi T. J. Heterocycl. Chem. 2009; 46: 1309
    • 37c Sanz R. Escribano J. Pedrosa MR. Aguado R. Arnaiz FJ. Adv. Synth. Catal. 2007; 349: 713
    • 37d Freeman AW. Urvoy M. Criswell ME. J. Org. Chem. 2005; 70: 5014
    • 37e Scott PH. Smith CP. Kober E. Churchill JW. Tetrahedron Lett. 1970; 1153
    • 37f Cadogan JI. G. Cameron-Wood M. Mackie RK. Searle RJ. G. J. Chem. Soc. 1965; 4831
  • 38 Odum RA. Brenner M. J. Am. Chem. Soc. 1966; 88: 2074
  • 39 Kaneko C. Yamamori M. Yamamoto A. Hayashi R. Tetrahedron Lett. 1978; 31: 2799
  • 40 Iaroshenko VO. Mkrtchyan S. Gevorgyan A. Vilches-Herrera M. Sevenard DV. Villinger A. Ghochikyan TV. Saghiyan A. Sosnovskikh VY. Lange P. Tetrahedron 2012; 68: 2532
  • 41 VanVliet DS. Gillespie P. Scicinski JJ. Tetrahedron Lett. 2005; 46: 6741
  • 42 http://www.inchem.org/documents/icsc/icsc/eics0485.htm.
  • 43 Kameda A. Nishimori H. Omura S. Koike M. Hino T. Jobashi T. Maeyama K. Yonezawa N. Nippon Kagaku Kaishi 2002; 211
  • 44 Reppel L. Schmollak W. Arch. Pharm. 1964; 297: 45
  • 45 Balalas T. Abdul-Sada A. Hadjipavlou-Litina DJ. Litinas KE. Synthesis 2017; 49: 2575
  • 46 https://pubchem.ncbi.nlm.nih.gov/compound/54738232#section.
  • 47 Wang Z.-M. Xie S.-S. Li X.-M. Wu J.-J. Wang X.-B. Kong L.-Y. RSC Adv. 2015; 5: 70395