CC BY-ND-NC 4.0 · SynOpen 2018; 02(02): 0168-0175
DOI: 10.1055/s-0036-1591976
paper
Copyright with the author

Asymmetric and Regiospecific Synthesis of Isotopically Labelled Cyclopropane Fatty Acid (9R,10S)-Dihydrosterculic Acid: Overcoming Spontaneous Protonation During Lithium-Sulfoxide Exchange­

Samuel W. J. Shields
a   Carleton University, Department of Chemistry, 203 Steacie Building,, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
,
Peter H. Buist
a   Carleton University, Department of Chemistry, 203 Steacie Building,, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
b   Carleton University, Institute of Biochemistry, 209 Nesbitt Building, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada   Email: jeff.manthorpe@carleton.ca
,
a   Carleton University, Department of Chemistry, 203 Steacie Building,, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
b   Carleton University, Institute of Biochemistry, 209 Nesbitt Building, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada   Email: jeff.manthorpe@carleton.ca
› Author Affiliations
This research was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant (P.H.B.), an NSERC Research Tools and Instrument Grant (P.H.B. and J.M.M.), the Canada Foundation for Innovation Leaders Opportunity Fund (J.M.M.) and Carleton University (J.M.M.).

Further Information

Publication History

Received: 12 January 2018

Accepted after revision: 14 March 2018

Publication Date:
08 June 2018 (online)


Abstract

The total synthesis of isotopically labelled (9R,10S)-dihydro­sterculic acid, a usual cyclopropane fatty acid with biologically relevant toxicity upon desaturation in vivo, is reported. A diastereoselective Corey­–Chaykovsky reaction was employed to form the cyclopropane ring. Rapid quenching of a lithium-sulfoxide exchange was required to achieve the requisite high levels of deuterium incorporation.

Supporting Information

 
  • References

    • 1a Christie WW. In Topics in Lipid Chemistry . Vol. 1. Gunstone FD. Wiley; New York: 1970: 1
    • 1b Smith CR. Wilson TL. Mikolajczak KL. Chem. Ind. (London) 1961; 256
    • 1c Kleiman R. Earle FR. Wolff IA. Lipids 1969; 4: 317
    • 1d Jie LK. Marcel SF. Chan MF. J. Chem. Soc., Chem. Commun. 1977; 78
    • 1e Vickery JR. J. Am. Oil Chem. Soc. 1980; 57: 87
    • 1f Berry SK. Lipids 1980; 15: 452
    • 1g Ralaimanarivo A. Gaydou EM. Bianchini JP. Lipids 1982; 17: 1
    • 1h Fisher GS. Cherry JP. Lipids 1983; 18: 589
    • 1i Razafimamonjison G. Leong Pock Tsy JM. Randriamiarinarivo M. Ramanoelina P. Rasoarahona J. Fawbush F. Danthu P. Chem. Biodivers. 2017; 14: e1600441
    • 1j For a recent application of cyclopropane fatty acids in the detection of labeling fraud in cheese, see: Caligiani A. Nocetti M. Lolli V. Marseglia A. Palla G. J. Agric. Food Chem. 2016; 64: 4158
  • 3 Wang H. Klein MG. Zou H. Snell G. Levin I. Li K. Sang B.-C. Nat. Struct. Mol. Biol. 2015; 22: 581
  • 4 Bai Y. McCoy JG. Levin EJ. Sobrado P. Rajashankar KR. Fox BG. Zhou M. Nature 2015; 524: 252
    • 5a Paton CM. Vaughan RA. Selen-Alpergin ES. Assadi-Porter F. Dowd MK. Nutr. Res. (N. Y., NY, U. S.) 2017; 45: 52
    • 5b Gutiérrez-Juárez R. Pocai A. Mulas C. Ono H. Bhanot S. Molina BP. Rosetti L. J. Clin. Invest. 2006; 116: 1686
    • 6a Ntambi JM. Miyazaki M. Stoehr JP. Lan H. Kendziorski CM. Yandell B. S. Song Y. Cohen P. Friedman JM. Attie AD. Proc. Natl. Acad. Sci. USA 2002; 99: 11482
    • 6b Flowers MT. Ntambi JM. Curr. Opin. Lipidol. 2008; 19: 248
  • 7 Stefan N. Peter A. Cegan A. Staiger H. Machann J. Schick F. Claussen CD. Fritsche A. Häring H.-U. Schleicher E. Diabetologia 2008; 51: 648
  • 8 Dobrzyn A. Ntambi JM. Obes. Rev. 2005; 6: 169
    • 9a Theodoropoulos PC. Gonzales SS. Winterton SE. Rodriguez-Navas C. McKnight JS. Morlock LK. Hanson JM. Cross B. Own AE. Duan Y. Moreno JR. Lemoff A. Mirzaei H. Posner BA. Williams NS. Ready JM. Nijhawan D. Nat. Chem. Biol. 2016; 12: 218
    • 9b Peck B. Schulze A. FEBS J. 2016; 283: 2767
    • 9c Igal RA. Biochim. Biophys. Acta, Mol. Cell Biol. Lipids 2016; 1865
    • 9d Morgan-Lappe SE. Tucker LA. Huang X. Zhang Q. Sarthy AV. Zakula D. Vernetti L. Schurdak M. Wang J. Fesik SW. Cancer Res. 2007; 67: 4390
    • 10a Zhang Z. Dales NA. Winther MD. J. Med. Chem. 2014; 57: 5039
    • 10b Imamura K. Tomita N. Kawakita Y. Ito Y. Ono K. Nii N. Miyazaki T. Yonemori K. Tawada M. Sumi H. Satoh Y. Yamamoto Y. Miyahisa I. Sasaki M. Satomi Y. Mirayama M. Nishigaki R. Maezaki H. Bioorg. Med. Chem. 2017; 25: 3768
    • 10c Kurihara A. Okano F. PCT Int. Appl. WO 2017150595 A1, 2017
    • 11a Lee M. Lenman M. Banas A. Bafor M. Singh S. Schweizer M. Nilsson R. Liljenberg C. Dahlqvist A. Gummeson P. Sjödahl S. Green A. Stymne S. Science 1998; 282: 1315
    • 11b Reed DW. Polichuk DR. Buist PH. Ambrose SJ. Sasata RJ. Savile CK. Ross AR. S. Covello PS. J. Am. Chem. Soc. 2003; 125: 10635
    • 11c Zhu X. Shieh P. Su M. Bertozzi CR. Zhang W. Chem. Commun. 2016; 11239
    • 12a Buist PH. Marecak DM. J. Am. Chem. Soc. 1992; 114: 5073
    • 12b Buist PH. Behrouzian B. J. Am. Chem. Soc. 1996; 118: 6295
    • 12c Buist PH. Behrouzian B. J. Am. Chem. Soc. 1998; 120: 871
    • 12d Meesapyodsuk D. Reed DW. Savile CK. Buist PH. Covello PS. Biochemistry 2000; 39: 11948
    • 12e Fauconnot L. Buist PH. J. Org. Chem. 2001; 66: 1210
    • 12f Savile CK. Fabriàs G. Buist PH. J. Am. Chem. Soc. 2001; 123: 4382
    • 12g Behrouzian B. Fauconnot L. Daligault F. Nugier-Chauvin C. Patin H. Buist PH. Eur. J. Biochem. 2001; 268: 3545
    • 12h Behrouzian B. Savile CK. Dawson B. Buist PB. Shanklin J. J. Am. Chem. Soc. 2002; 124: 3277
    • 12i Fauconnot L. Buist PH. Bioorg. Med. Chem. Lett. 2001; 11: 2879
    • 12j Reed DW. Savile CK. Qui X. Buist PH. Covello PS. Eur. J. Biochem. 2002; 269: 5024
    • 12k Serra M. Gauthier LT. Fabrias G. Buist PH. Insect Biochem. Mol. Biol. 2006; 36: 822
    • 12l Whittle EJ. Tremblay AE. Buist PH. Shanklin J. Proc. Natl. Acad. Sci. USA 2008; 105: 14738
    • 12m Bhar P. Reed DW. Covello PS. Buist PH. Angew. Chem. Int. Ed. 2012; 51: 6686
    • 13a Buist PH. MacLean DB. Can. J. Chem. 1981; 59: 828
    • 13b Buist PH. MacLean DB. Can. J. Chem. 1982; 60: 371
    • 13c Buist PH. Findlay JM. Can. J. Chem. 1984; 63: 971
    • 13d Buist PH. Pon RA. J. Org. Chem. 1990; 55: 6240
    • 13e Stuart LJ. Buck JP. Tremblay AE. Buist PH. Org. Lett. 2006; 8: 79
  • 14 Palko JW. Buist PH. Manthorpe JM. Tetrahedron: Asymmetry 2013; 24: 165

    • For other asymmetric syntheses of cyclopropane fatty acids, see:
    • 15a Coxon GD. Al-Dulayymi JR. Baird MS. Knobl S. Roberts E. Minnikin DE. Tetrahedron: Asymmetry 2003; 14: 1211
    • 15b Lou Y. Horikawa M. Kloster RA. Hawryluk NA. Corey EJ. J. Am. Chem. Soc. 2004; 126: 8916
    • 15c Shah S. White JM. Williams SJ. Org. Biomol. Chem. 2014; 12: 9427
    • 16a Farhat S. Marek I. Angew. Chem. Int. Ed. 2002; 41: 1410
    • 16b Farhat S. Zouev I. Marek I. Tetrahedron 2004; 60: 1329
    • 16c Chinkov N. Majumdar S. Marek I. J. Am. Chem. Soc. 2002; 124: 10282
    • 16d Chinkov N. Majumdar S. Marek I. J. Am. Chem. Soc. 2003; 125: 13258
    • 16e Chinkov N. Chechik H. Majumdar S. Marek I. Synthesis 2002; 2473
    • 16f Sklute G. Marek I. J. Am. Chem. Soc. 2006; 128: 4642
    • 16g Liard A. Marek I. J. Org. Chem. 2000; 65: 7218
    • 16h Satoh T. Chem. Rev. 1996; 96: 3303
    • 16i Satoh T. Itoh N. Watanabe H. Koide H. Matsuno H. Matsuda K. Yamakawa K. Tetrahedron 1995; 51: 9327
    • 16j Satoh T. Hanaki N. Kumarochi Y. Inoue Y. Hosaya K. Sakai K. Tetrahedron 2002; 58: 2533
    • 16k Satoh T. Yamada N. Asano T. Tetrahedron Lett. 1998; 39: 6935
  • 17 Abramovitch A. Fensterbank L. Malacria M. Marek I. Angew. Chem. Int. Ed. 2008; 47: 6865
  • 18 Palko JW. Enantioselective Synthesis of (9R,10S)-Dihydrosterculic Acid: Overcoming Unanticipated Challenges in α,β-Unsaturated 1,1-bis(Sulfoxides). M.Sc. Thesis; Carleton University: 2012
  • 19 Shields SW. J. Part A: Enantioselective Synthesis of C9 and C10 Deuterio-Labelled Dihydrosterculic Acids. Part B: Efficient, and Scalable Preparation of bis(Deuterium)- and 13C-Labelled Diazomethane. M.Sc. Thesis; Carleton University: 2014
  • 20 Mihailescu M. Vaswani RG. Jardón-Valadez E. Castro-Román F. Freites JA. Worcester DL. Chamberlin AR. Tobias DJ. White SH. Biophys. J. 2011; 100: 1455
  • 21 Toledo H. Pisarevsky E. Abramovitch A. Szpilman AM. Chem. Commun. 2013; 4367
  • 22 Yoshida Y. Sakakura Y. Aso N. Okada S. Tanabe Y. Tetrahedron 1999; 55: 2183

    • Despite the absence of a chelating group, tertiary cyclopropyllithium species such as 19 have been shown to be configurationally stable. See references 14 and 17, as well as
    • 23a Corey EJ. Eckrich TM. Tetrahedron Lett. 1984; 25: 2415
    • 23b Piers E. Coish P. Synthesis 1995; 47
    • 23c Isono N. Mori M. J. Org. Chem. 1996; 61: 7867
    • 23d Lautens M. Delanghe PH. M. J. Org. Chem. 1992; 57: 798
    • 23e Piers E. Jean M. Marrs PS. Tetrahedron Lett. 1987; 28: 5075
  • 24 Orthometallation as the proton source is supported by non-integer integration of t-butyl p-tolyl sulfoxide that was observed in the 1H NMR spectrum of the crude reaction products in the conversion of 18 to 21 (See Supporting Information, Figure S29). The authors surmise that non-integer integration of the protons ortho to the sulfinyl group arises via formation of 20 followed by directed orthometallation by excess t-BuLi followed by deuteration. While this evidence is indirect, a similar phenomenon has been previously reported in the lithium-sulfoxide exchange of paracyclophanyl p-tolyl sulfoxides. The authors had experimental evidence for orthometallation of t-butyl p-tolyl sulfoxide as the proton source; however, these side-products were obtained in low to moderate yields, thus not excluding the other possible proton sources proposed herein. See: Parmar R. Coles MP. Hitchcock PB. Rowlands GJ. Synthesis 2010; 4177
  • 25 Pedersen DS. Rosenbohm C. Synthesis 2001; 2431
  • 26 Savile CK. Reed DW. Meesapyodsuk D. Covello PS. Buist PH. J. Chem. Soc., Perkin Trans. 1 2001; 1116
  • 27 Gardette M. Alexakis A. Normant JF. Tetrahedron 1985; 41: 5887
  • 28 Najera F. Delouvrie B. Fensterbank L. Malacria M. J. Organomet. Chem. 2002; 644: 130
  • 29 Mohammadpoor-Baltork I. Moghadam M. Tangestaninejad S. Mirkhani V. Mirjafari A. C. R. Chim. 2010; 13: 1468
  • 30 Motoyoshi H. Ishigami K. Kitahara T. Tetrahedron 2001; 57: 3899