CC BY-ND-NC 4.0 · SynOpen 2018; 02(02): 0200-0206
DOI: 10.1055/s-0036-1591967
paper
Copyright with the author

Microwave-Assisted Synthesis of Andrographolide Analogues as Potent β-Glycosidase Inhibitors

Masood ur Rahman
a   Organic Chemistry Research Lab, Department of Chemistry, National Institute of Technology, Srinagar, 190006, India
b   Bioorganic Chemistry Division, IIIM, Sanatnagar, Srinagar, 190005, India
,
Iram Ayoob
c   Department of Chemistry, University of Kashmir, Srinagar, 190006, India
,
Shakeel u Rehman
c   Department of Chemistry, University of Kashmir, Srinagar, 190006, India
,
Khursheed A. Bhat
b   Bioorganic Chemistry Division, IIIM, Sanatnagar, Srinagar, 190005, India
,
Tabassum Ara*
a   Organic Chemistry Research Lab, Department of Chemistry, National Institute of Technology, Srinagar, 190006, India
› Author Affiliations
M.R. is grateful to MHRD for providing a research fellowship
Further Information

Publication History

Received: 31 December 2017

Accepted after revision: 04 March 2018

Publication Date:
13 June 2018 (online)


Abstract

Andrographolide, a bioactive compound isolated from Andrographis paniculata exhibits multiple pharmacological activities, including anti-HIV, antiplatelet aggregation, hepatic lipid peroxidation protective, hepatoprotective, choleretic, and anticancer effects. Herein, we report the synthesis of diverse analogues of andrographolide along with their β-glucosidase inhibitory activity against sweet almond β-glucosidase. The parent compound, And-1, displayed moderate inhibitory activity against the sweet almond β-glucosidase with IC50 of 142.5 μM. Among the synthesised analogues And-10 showed the best activity, with IC50 of 92.4 μM, whereas the oxidised products (And-4 and And-5) were moderately active against the tested enzyme. Additionally, compounds And-6, And-7, And-8, and And-10 exhibited better β-glucosidase inhibitory activity than the positive control Castanospermine, with IC50 of 100.2, 102.4, 106.5, and 92.4 μM, respectively. These results highlight the importance of an electron-withdrawing NO2 group on the phenyl moiety in attaining the better β-glucosidase inhibition. It is noteworthy that the effect of a particular group plays a significant role in bioactivity. This study thus highlights an important aspect with regard to the most active compounds, which could extend the arsenal of compounds affecting the corresponding enzymes after further polishing and fine tuning.

Supporting Information

 
  • References

  • 1 Dhiman A. Goyal Ju. Sharma K. Nanda A. Dhiman S. J. Pharm. Sci. Innov. 2012; 1: 1
  • 2 Puri A. Saxena R. Saxena RP. Saxena KC. Srivastava V. Tandon JS. J. Nat. Prod. 1993; 56: 995
  • 3 Singha PK. Roy S. Dey S. Fitoterapia 2003; 74: 692
  • 4 Shen YC. Chen CF. Chiou WF. Br. J. Pharmacol. 2002; 135: 399
  • 5 Zhang CY. Tan BK. Clin. Exp. Pharmacol. Physiol. 1996; 23: 675
  • 6 Yu BC. Hung CR. Chen WC. Planta Med. 2003; 69: 1075
  • 7 Borhanuddin M. Shamsuzzoha M. Hussain AH. Bangladesh Med. Res. Counc. Bull. 1994; 20: 24
  • 8 Wang DW. Zhao HY. Chin. Med. J. (Engl.) 1994; 107: 464
  • 9 Dua VK. Ojha VP. Roy R. J. Ethnopharmacol. 2002; 95: 247
  • 10 Calabrese C. Berman SH. Babish JG. Phytother. Res. 2000; 14: 333
  • 11 Amroyan E. Gabrielian E. Panossian A. Phytomedicine 1999; 6: 27
  • 12 Choudhury BR. Poddar MK. Methods Find Exp Clin Pharmacol. 1984; 6: 481
  • 13 Handa SS. Sharma A. Indian J. Med. Res. 1990; 92: 284
  • 14 Shukla B. Visen PK. Patnaik GK. Dhawan BN. Planta Med. 1992; 58: 146
  • 15 Kumar RA. Sridevi K. Kumar NV. J. Ethnopharmacol. 2004; 92: 291
  • 16 Rajagopal S. Kumar RA. Deevi DS. J. Exp. Ther. Oncol. 2003; 3: 147
  • 17 Chang HM. Volume 2; World Scientific Publishing Co. Ptd. Ltd., Singapore. 1987: p. 918
  • 18 Shen YC. Chen CF. Chiou WF. Planta Med. 2000; 66: 314
  • 19 Shen YC. Chen CF. Chiou WF. Br. J. Pharmacol. 2002; 135: 399
  • 20 Iruretagoyena MI. Sepulveda SE. Lezana JP. Hermoso M. Bronfman M. Gutierrez MA. Jacobelli SH. Kalergis AM. J. Pharmacol. Exp. Ther. 2006; 318: 59
  • 21 Iruretagoyena MI. Tobar JA. Gonzalez PA. Sepulveda SE. Figueroa CA. Burgos RA. Hancke JL. Kalergis AM. J. Pharmacol. Exp. Ther. 2005; 312: 366
  • 22 Carretta MD. Alarcon P. Jara E. Solis L. Hancke JL. Concha II. Hidalgo MA. Burgos RA. Eur. J. Pharmacol. 2009; 602: 413
  • 23 Burgos RA. Seguel K. Perez M. Meneses A. Ortega M. Guarda MI. Loaiza A. Hancke JL. Planta Med. 2005; 71: 429
  • 24 Pratheeshkumar P. Kuttan G. J. Environ. Pathol. Toxicol. Oncol. 2011; 30: 33
  • 25 Chen JH. Hsiao G. Lee AR. Wu CC. Yen MH. Biochem. Pharmacol. 2004; 67: 1337
  • 26 Yan J. Chen Y. He C. Yang ZZ. Lu C. Chen XS. Cell Biol. Toxicol. 2012; 28: 47
  • 27 Bernack RJ. Niedbala MJ. Korytnyk W. Cancer Metastasis Rev. 1985; 4: 81
  • 28 Pili R. Chang J. Partis RA. Mueller RA. Chrest FJ. Passaniti A. Cancer Res. 1995; 55: 2920
  • 29 Humphries MJ. Matsumoto K. White SL. Olden K. Cancer Res. 1986; 46: 5215
  • 30 Papandreou MJ. Barbouche R. Guieu R. Kieny MP. Fenouillet E. Mol. Pharmacol. 2002; 61: 186
  • 31 Ouzounov S. Mehta A. Dwek RA. Block TM. Jordan R. Antiviral Res. 2002; 55: 425
  • 32 Schnidt DD. Frommer W. Junge B. Muller L. Wingender W. Truschei E. Schafer D. Naturwissenschaften 1977; 64: 535
  • 33 Kameda Y. Asano N. Yoshikawa M. Takeucki M. Yamaguchi T. Matsui K. Horii S. Fukase H. J. Antibiot. 1984; 37: 1301
  • 34 Robinson KM. Begovic ME. Rhinehart BL. Heineke EW. Ducep JB. Kastner PR. Marshall FN. Danzin C. Diabetes 1991; 40: 825
  • 35 Fujisawa T. Ikegami H. Inoue K. Kawabata Y. Ogihara T. Metabolism 2005; 54: 387
  • 36 Van den Broek LA. Kat-Van Den Nieuwenhof MW. Butters TD. Van Boeckel CA. J. Pharm. Pharmacol. 1996; 48: 172
  • 37 Zhang XF. Tan BK. Clin. Exp. Pharmacol. Physiol. 2000; 2: 358
  • 38 Zhang XF. Tan BK. Acta Pharmacol. Sin. 2000; 21: 1157
  • 39 Rafidah H. Azimahtol HP. Meenakshii N. J. Ethnopharmacol. 2004; 95: 205
  • 40 Siripong P. Kongkathip B. Preechanukool K. Picha P. Tunsuwan K. Taylor WC. J. Sci. Soc. Thailand 1992; 18: 187
  • 41 Sambyal VS. Goswami KN. Cryst. Res. Technol. 1995; 30: 629
  • 42 Yong JK. Akira T. Naoto K. Takeshi K. Tetrahedron 1999; 55: 8353
  • 43 Wu CY. Hsu CC. Tsai YC. Biochem. Biophys. Res. Commun. 2001; 284: 466
  • 44 Verma N. Behera BC. Sharma BO. Hacettepe J. Biol. Chem. 2012; 40: 7
  • 45 Ani V. Naidu KA. Eur. Food Res. Technol. 2008; 226: 897
  • 46 Rupercht RM. Mullaney S. Andersen J. Bronson R. J. Acquired Immune Defic. Syndr. 1989; 2: 149
  • 47 Shakeel-u-Rehman, Bhat KA. Lone SH. Malik FA. Arabian J. Chem. 2015; DOI: 10.1016/j.arabjc.2015.10.009.
  • 48 Ayoob I. Lone SH. Masood-ur-Rahman, Zargar OA. Bashir R. Shakeel-u-Rehman, Khuroo MA. Bhat KA. ChemistrySelect 2017; 2: 10153