CC BY-ND-NC 4.0 · SynOpen 2018; 02(01): 0058-0063
DOI: 10.1055/s-0036-1591931
paper
Copyright with the author

First Total Synthesis of Cryptopyranmoscatone A3 and Crypto­pyranmoscatone B4

A. Maheswara Reddy
Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India   Email: gowravaramsr@yahoo.com   Email: sabitha@iict.res.in
,
Gowravaram Sabitha*
Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India   Email: gowravaramsr@yahoo.com   Email: sabitha@iict.res.in
› Author Affiliations
The authors thank the Council of Scientific and Industrial Research (CSIR), New Delhi, India, for financial support as part of a five year programme under the title ORIGIN (CSC-0108). A.M. thanks the Council of Scientific and Industrial Research (CSIR), New Delhi, India, for financial assistance in the form of a Research Fellowship.
Further Information

Publication History

Received: 04 October 2017

Accepted after revision: 20 January 2018

Publication Date:
27 February 2018 (online)


Abstract

The first total synthesis of cryptopyranmoscatones A3 and B4 has been accomplished from d-ribose or but-3-ynol. The key steps involved in the synthesis are oxa-Michael addition, highly diastereo­selective Brown allylation, and ring closing metathesis (RCM) and cross metathesis (CM) reactions.

Supporting Information

 
  • References

    • 1a de Fátima A. Kohn LK. de Carvalho JE. Pilli RA. Bioorg. Med. Chem. 2006; 14: 622
    • 1b Marco JA. Carda M. Recent Advances in the Field of Naturally Occurring 5,6-Dihydropyran-2-ones. In Natural Lactones and Lactams. Synthesis, Occurrence and Biological Activity. Janecki T. Wiley-VCH; Weinheim: 2014: 51-100
  • 2 Wach J.-Y. Güttinger S. Kutay U. Gademann K. Bioorg. Med. Chem. Lett. 2010; 20: 2843
  • 3 Mosaddik MA. Haque ME. Phytother. Res. 2003; 17: 1155
  • 4 de Fátima A. Martins CV. B. de Resende MA. Magalhaes TF. F. Lima BH. S. Watanabe GA. Ruiz AL. T. G. de Carvalho JE. Pilli RA. Lett. Drug Des. Discovery 2008; 5: 74
  • 5 Kabir KE. Khan AR. Mosaddik MA. J. Appl. Entomol. 2003; 127: 112
  • 6 Cavalheiro AJ. Yoshida M. Phytochemistry 2000; 53: 811
  • 7 Sturgeon CM. Cinel B. Díaz-Marrero AR. McHardy LM. Ngo M. Andersen RJ. Roberge M. Cancer Chemother. Pharmacol. 2008; 61: 407
  • 8 Giocondo MP. Bassi CL. Telascrea M. Cavalheiro AJ. Bolzani VS. Silva DH. S. Agustoni D. Mello ER. Soares CP. Rev Ciênc Farm Básica Apl. 2009; 30: 315
  • 9 Drewes SE. Horn MM. Ramesar NS. Ferreira D. Nel RJ. J. Hutchings A. Phytochemistry 1998; 49: 1683
  • 10 Zschocke S. VanStaden J. J. Ethnopharmacol. 2000; 71: 473
    • 11a Sabitha G. Sandeep A. Senkara Rao A. Yadav JS. Eur. J. Org. Chem. 2013; 6702
    • 11b Sabitha G. Praveen A. Kishore DasS. Synthesis 2015; 47: 330
    • 11c Raju A. Shiva Raju K. Sabitha G. Tetrahedron: Asymmetry 2015; 26: 948
    • 11d Sabitha G. Senkara Rao A. Yadav JS. Tetrahedron: Asymmetry 2011; 22: 866
    • 11e Marco JA. Carda M. Murga J. Falomir E. Tetrahedron 2007; 63: 2929
  • 12 Sabitha G. Reddy SS. S. Yadav JS. Tetrahedron Lett. 2010; 51: 6259
  • 13 Sabitha G. Reddy SS. S. Yadav JS. Tetrahedron Lett. 2011; 52: 2407
  • 14 Maheswara Reddy A. Sabitha G. Sirisha K. RSC Adv. 2015; 5: 35746
  • 15 Sabitha G. Raju A. Nagendra Reddy C. Yadav JS. RSC Adv. 2014; 4: 1496
    • 16a Maram L. Parigi RR. Das B. Tetrahedron 2016; 72: 7135
    • 16b Ping LiZ. Dong W. Junhui Z. J. Chem. Res. 2016; 40: 331
  • 17 The diastereomeric ratio of the product was determined by using a Shimadzu high-performance liquid-chromatography (HPLC) system equipped with a chiral HPLC column (Chiralcel OD) and a UV detector at an absorbance of 254 nm. Eclipse XDB C18 (150 × 4.6 mm, 5 (m column) and a solvent system of 60% acetonitrile in 0.1% FA at a flow rate of 1.0 mL/min were used. tR: 7.8 and 8.4 min.
  • 18 Hansen TM. Florence GJ. Lugo-Mas P. Chen J. Abrams JN. Forsyth CJ. Tetrahedron Lett. 2003; 44: 57
  • 19 Prasad KR. Phaneendra G. Tetrahedron 2012; 68: 7489
    • 20a Fuwa H. Yamaguchi H. Sasaki M. Org. Lett. 2010; 12: 1848
    • 20b Hiebel M.-A. Pelotier B. Piva O. Tetrahedron Lett. 2010; 51: 5091
    • 21a Brown HC. Jadhav PK. J. Am. Chem. Soc. 1983; 105: 2092
    • 21b Brown HC. Bhat KS. Randad RS. J. Org. Chem. 1989; 54: 1570
    • 21c Bolshakov S. Leighton JL. Org. Lett. 2005; 7: 3809
    • 21d Chan K.-P. Ling YH. Loh T.-P. Chem. Commun. 2007; 939
    • 22a Grubbs RH. Miller SJ. Fu GC. Acc. Chem. Res. 1995; 28: 446
    • 22b Furstner A. Angew. Chem. Int. Ed. 2000; 39: 3012
    • 22c Trnka TM. Grubbs RH. Acc. Chem. Res. 2001; 34: 18
    • 22d Grubbs RH. Chang S. Tetrahedron 1998; 54: 4413
  • 23 Drouet KE. Theodorakis EA. Chem. Eur. J. 2000; 6: 1987
    • 24a Grubbs RH. Chang S. Tetrahedron 1998; 54: 4413
    • 24b Fuwa H. Yamaguchi H. Sasaki M. Org. Lett. 2010; 12: 1848
    • 24c Hiebel M.-A. Pelotier B. Piva O. Tetrahedron Lett. 2010; 51: 5091
    • 25a Sabitha G. Narjis F. Gopal P. Reddy NC. Yadav SJ. Tetrahedron: Asymmetry 2009; 20: 184
    • 25b Raju A. Sabitha G. RSC Adv. 2015; 5: 34040