CC BY ND NC 4.0 · SynOpen 2017; 01(01): 0166-0172
DOI: 10.1055/s-0036-1591844
paper
Copyright with the author

Synthesis of the C1–C9, C11–C19 Pyran Core and C19–C24 Fragments­ of Macrolactin 3

A. Maheshwar Reddy
a  Natural Products Chemistry Division and CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
b  Academy of Scientific and Innovative Research (AcSIR), New Delhi 110020, India   Email: gowravaramsr@yahoo.com
,
Gowravaram Sabitha*
a  Natural Products Chemistry Division and CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
b  Academy of Scientific and Innovative Research (AcSIR), New Delhi 110020, India   Email: gowravaramsr@yahoo.com
› Author Affiliations
A.M.R. thanks CSIR, New Delhi, India for the award of a Fellowship. Both the authors thank CSIR, New Delhi, India for financial support as part of the XII Five Year plan programme under the title ORIGIN (CSC-0108).
Further Information

Publication History

Received: 17 October 2017

Accepted after revision: 07 November 2017

Publication Date:
29 November 2017 (online)

Abstract

We describe herein an efficient synthesis of the C1–C9, C11–C19 pyran moiety and C18–C24 core fragments of macrolactin 3. The prominent features of this work include construction of the Z-double bond of the 1,3-(Z,E)-diene system utilizing Horner–Wadsworth–Emmons­ reaction under Still–Gennari conditions. A Sharpless asymmetric epoxidation and subsequent epoxide opening under BF3·OEt2 conditions were applied to generate the stereogenic centers at C15 and C16, oxa-Michael addition and Jacobsen resolution facilitate the synthesis of the fragments.

Supporting Information

 
  • References and Notes

  • 1 Mondol MA. M. Tareq FS. Kim JH. Lee M. a. Lee H.-S. Lee Y.-J. Lee JS. Shin HJ. J. Nat. Prod. 2011; 74: 2582
  • 2 Freire F. Seco JM. Emilio Q. Riguera R. J. Org. Chem. 2005; 70: 3778
  • 3 Ohtani I. Kusumi T. Kashman Y. Kakisawa H. J. Am. Chem. Soc. 1991; 113: 4092
  • 4 Arnone A. Nasini G. Pava OV. Phytochemistry 1998; 48: 507
  • 5 Oh DC. Scott JJ. Currie CR. Clardy J. Org. Lett. 2009; 11: 633
  • 6 Lu XL. Xu QZ. Liu XY. Cao X. Ni KY. Jiao BH. Chem. Biodivers. 2008; 5: 1669
    • 7a Sabitha G. Reddy DV. Rao AS. Yadav JS. Tetrahedron Lett. 2010; 51: 4195
    • 7b Sabitha G. Srinivas R. Yadav JS. Synthesis 2011; 1484
    • 7c Sabitha G. Sankar A. Yadav JS. Synthesis 2010; 505
    • 8a Yadav JS. Deshpande PK. Sharma GV. M. Tetrahedron 1990; 46: 7033
    • 8b Sabitha G. Sudhakar K. Yadav JS. Tetrahedron Lett. 2006; 47: 8599
    • 8c Sabitha G. Bhaskar V. Reddy SS. S. Yadav JS. Tetrahedron 2008; 64: 10207
    • 8d Sabitha G. Bhaskar V. Reddy SS. S. Yadav JS. Chin. J. Chem. 2010; 28: 2421
    • 8e Sabitha G. Reddy CN. Raju A. Yadav JS. Tetrahedron: Asymmetry 2011; 22: 493
    • 9a Stille WC. Gennari C. Tetrahedron Lett. 1983; 24: 4405
    • 9b Ando K. J. Org. Chem. 1994; 62: 1934
  • 10 Yadav JS. Kumar MR. Sabitha G. Tetrahedron Lett. 2008; 49: 463
  • 11 Colvin EW. Robertson AD. Wakharkar S. J. Chem. Soc., Chem. Commun. 1983; 312
  • 12 Prasad KR. Anbarasan P. Tetrahedron: Asymmetry 2006; 17: 1146
  • 13 Krishna PR. Nomula R. Krishna KV. S. R. Tetrahedron Lett. 2014; 55: 3381
  • 14 Sabitha G. Shankaraiah K. Yadav JS. Eur. J. Org. Chem. 2013; 4870
  • 15 Fuwa H. Yamaguchi H. Sasaki M. Org. Lett. 2010; 12: 1848