CC BY-ND-NC 4.0 · SynOpen 2018; 02(01): 0064-0071
DOI: 10.1055/s-0036-1591771
paper
Copyright with the author

Synthesis of 3-(Arylthio)propionic Acids from Nonactivated Aryl Iodides and their Use as Odorless Aryl Mercaptan Surrogates

B. Menczinger
,
A. Nemes
,
A. Csámpai
,
National Research Development and Innovation Office (NN 117633).
Further Information

Publication History

Received: 14 November 2017

Accepted after revision: 10 February 2018

Publication Date:
14 March 2018 (online)

Abstract

The reaction of aryl iodides, 3-mercaptopropionic acid, and Cu2O in refluxing pyridine resulted in the formation of 3-(arylthio)propionic acids in good to excellent yield. The latter 3-(arylthio)propionic acids — as novel aryl mercaptan equivalents — gave aryl mercaptans or diaryl disulfides, respectively, on reductive (Na2S) or oxidative (I2) cleavage in alkaline media. The symmetrical disulfides can also be prepared by oxidizing their precursor mercaptans with phenyltrimethyl­ammonium­tribromide in pyridine at ambient temperature.

Supporting Information

 
  • References

  • 1 Bingul M. Tan O. Gardner CR. Sutton SK. Arndt GM. Marshall GM. Cheung BB. Kumar N. Black DSt. C. Molecules 2016; 21: 916
  • 2 Okaecwe T. Swanepoel AJ. Petzer A. Bergh JJ. Petzer JP. Bioorg. Med. Chem. 2012; 20: 4336
  • 3 Jia W. Liu Y. Li W. Liu Y. Zhang D. Zhang P. Gong P. Bioorg. Med. Chem. 2009; 17: 4569
  • 4 Siegl PK. S. Goldberg AI. Goldberg MR. Chang PI. US. Pat. 5817658, 06 Oct, 1998
  • 5 Frank R. PCT Int. Appl 2006122771, 23 Nov, 2006
  • 6 Lynch JJ. Jr. Salata JJ. PCT Int. Appl 9800405, 08 Jan, 1998
    • 7a Gao S. Tseng C. Tsai CH. Yao C.-F. Tetrahedron 2008; 64: 1955
    • 7b Petropoulos JC. McCall MA. Tarbell DS. J. Am. Chem. Soc. 1953; 75: 1130
    • 7c Arndt F. Loeve L. Ayca E. Chem. Ber. 1954; 84: 329
    • 7d Kresze G. Schramm W. Cleve G. Chem. Ber. 1961; 94: 2060
    • 8a Arndt F. Flemming W. Scholz E. Löwensohn V. Ber. Dtsch. Chem. Ges. 1923; 56: 1269
    • 8b Krollpfeiffer F. Schultze H. Ber. Dtsch. Chem. Ges. 1923; 56: 1819
    • 8c Gresham TL. Jansen JE. Shaver FW. Bankert RA. Beears WL. Predengast MG. J. Am. Chem. Soc. 1949; 71: 661
    • 8d Sen AB. Arora SL. J. Indian Chem. Soc. 1958; 35: 197
    • 8e Node M. Nishide K. Ochiai M. Fuji K. Fujita E. J. Org. Chem. 1981; 46: 5163
  • 9 Hurd CD. Hayao S. J. Am. Chem. Soc. 1954; 76: 5065
  • 10 Gogia S. Sirohi R. Gupta S. Kishore D. Joshi BC. J. Indian Chem. Soc. 2004; 81: 515
  • 11 Becht J.-M. Wagner A. Mioskowski C. J. Org. Chem. 2003; 68: 5758
    • 12a Jepsen TH. Larsen M. Jørgensen M. Nielsen MB. Tetrahedron Lett. 2011; 52: 4045
    • 12b Itoh T. Mase T. Org. Lett. 2004; 6: 4587
  • 13 Wang P. Zhang J. He H. Jin Y. Nanoscale 2014; 6: 13470
  • 14 Jadzinsky PD. Calero G. Ackerson CJ. Bushnell DA. Kornberg RD. Science 2007; 318: 430
  • 15 Xu M. Lu N. Qi D. Xu H. Wang Y. Shi S. Chi L. J. Colloid Interface Sci. 2011; 360: 300
  • 16 Bindoli A. Fukuto JM. Forman HJ. Antioxid. Redox Signal. 2008; 10: 1549
  • 17 Mahmood N. Jhaumeer-Lauloo S. Sampson J. Houghton PJ. J. Pharm. Pharmacol. 1998; 50: 1339
    • 18a Allen CF. H. MacKay DD. Org. Synth. 1932; 12: 76
    • 18b Bhaumik I. Misra AK. SynOpen 2017; 1: 117
  • 19 Kuhle E. The Chemistry of the Sulfenic Acids . Georg Thieme; Stuttgart: 1979
  • 20 Douglass IB. J. Org. Chem. 1974; 39: 563
  • 21 Youn J.-H. Herrmann R. Tetrahedron Lett. 1986; 27: 1493
  • 22 Nishiyama Y. Kawamatsu H. Sonoda N. J. Org. Chem. 2005; 70: 2551
  • 23 Smid T. Blees JS. Bajer MM. Wild J. Pescatori L. Crucitti GC. Scipione L. Costi R. Heinrich CJ. Brüne B. Colburn NH. Di Santo R. PLoS ONE 2016; 11: e0151643
  • 24 Rice WG. Turpin JA. Schaffer CA. Graham L. Clanton D. Buckheit RW. Jr. Zaharevitz D. Summers A. Wallqvist A. Corell DG. J. Med. Chem. 1996; 39: 3606
  • 25 Gundermann K.-D. Hümke K. In Houben-Weyl . E 11/1, Georg Thieme Verlag; Stuttgart: 1985: 32
    • 26a Gundermann K.-D. Hümke K. In Houben-Weyl . E 11/1, Georg Thieme Verlag; Stuttgart: 1985. p. 129
    • 26b Suzuki H. Shinoda M. Bull. Chem. Soc. Jpn. 1977; 50: 321
    • 26c Drabowitz J. Mikołajczik M. Synthesis 1980; 32
    • 26d Dhar P. Ranjan R. Chandrsekaran S. J. Org. Chem. 1990; 55: 3728
    • 26e Sato T. Otera J. Nozaki H. Tetrahedron Lett. 1990; 31: 3591
  • 27 Osuka A. Ohmasa K. Uno Y. Suzuki H. Synthesis 1983; 68
  • 28 Zhang Z. Zhou X. Xie Y. Greenberg MM. Xi Z. Zhou C. J. Am. Chem. Soc. 2017; 139: 6146
  • 29 Baldwin AD. Kiick KL. Bioconjugate Chem. 2011; 22: 1946
  • 30 Weismann MR. Winger KT. Ghiassan S. Gobbo P. Workentin MS. Bioconjugate Chem. 2016; 27: 586
  • 31 Holmberg B. Schjånberg E. Ark. Kemi. Mineral. Geol. 1942; A15: No. 20 ; Chem. Abstr. 1944, 38: 2943; Chem. Zentralb.; 1943, (I), 388
  • 32 Rábai J. Synthesis 1989; 523
  • 33 Krollpfeiffer F. Schultze H. Schlumbohm E. Sommermeyer E. Ber. Dtsch. Chem. Ges. 1925; 58: 1654
  • 34 Jacquignon P. Fravolini A. Feron A. Croisy A. Experimentia 1974; 30: 452
  • 35 Kreevoy MM. Harper ET. Duvall RE. Wilgus III HS. Ditsch LT. J. Am. Chem. Soc. 1960; 82: 4899
  • 36 Dean, R. T.; Hook, E. O. US Patent 2,450,634 (1942, Am. Cyanamid Co.); Chem. Abstr. 1949, 895.
  • 37 Otto R. Tröger J. Ber. Dtsch. Chem. Ges. 1891; 24: 1145
  • 38 Spyroudis S. Varvoglis A. Synthesis 1975; 445
  • 39 Vinkler E. Klivényi F. Acta Chim. Acad. Sci. Hung. 1954; 5: 159
  • 40 Gattermann L. Ber. Dtsch. Chem. Ges. 1899; 32: 1136
  • 41 Reich HJ. Willis JrW. W. Clark PD. J. Org. Chem. 1981; 46: 2775
  • 42 Rábai J. Kapovits I. Tanács B. Tamás J. Synthesis 1990; 847
  • 43 Morris JC. Lanum WJ. Helm RV. Haines WE. Cook GL. Ball JS. J. Chem. Eng. Data 1960; 5: 112
  • 44 Kharash N. Swidler R. J. Org. Chem. 1954; 19: 1704
  • 45 Cabiddu S. Melis S. Piras PP. Sotgiu F. Synthesis 1982; 583
  • 46 Mindl J. Balcárek P. Šilar L. Večeřa M. Collect. Czech. Chem. Commun. 1980; 45: 3130
  • 47 Grillot GF. Levin PM. Green R. Ashford RB. J. Am. Chem. Soc. 1950; 72: 1863