CC BY ND NC 4.0 · SynOpen 2018; 02(02): 0138-0144
DOI: 10.1055/s-0036-1591572
paper
Copyright with the author

Efficient Syntheses of Diverse N-Heterocycles: The Molybdenum(VI)-Catalyzed Reductive Cyclization of Nitroarenes using Pinacol as a Deoxygenating­ Agent

Raghuram Gujjarappa
Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal-795004, Manipur, India   Email: cmalakar@nitmanipur.ac.in
,
Nagaraju Vodnala
Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal-795004, Manipur, India   Email: cmalakar@nitmanipur.ac.in
,
Arup K. Kabi
Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal-795004, Manipur, India   Email: cmalakar@nitmanipur.ac.in
,
Dhananjaya Kaldhi
Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal-795004, Manipur, India   Email: cmalakar@nitmanipur.ac.in
,
Mohan Kumar
Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal-795004, Manipur, India   Email: cmalakar@nitmanipur.ac.in
,
Uwe Beifuss
Institut für Chemie, Universität Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
,
Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal-795004, Manipur, India   Email: cmalakar@nitmanipur.ac.in
› Author Affiliations
C.C.M. acknowledges Science and Engineering Research Board (SERB), New Delhi and NIT Manipur for the financial support in the form of research grant (ECR/2016/000337). R.G., N.V., D.K. and A.K.K. are grateful to the Ministry of Human Resource and Development (MHRD), New Delhi for Fellowship support.

Further Information

Publication History

Received: 31 January 2018

Accepted after revision: 05 April 2018

Publication Date:
09 May 2018 (online)

Abstract

Molybdenum(VI)-catalyzed domino reductive cyclization of nitroarenes has been devised for the syntheses of 1,4-benzoxazines and 1,4-benzothiazines in the presence of pinacol as deoxygenating agent. The scope of the described method was further extended to the syntheses of the rarely explored scaffolds, 1-hydroxyphenazines and quinoxalines. The present method avoids the use of hazardous deoxygenating agents and operates under solvent-free conditions.

Supporting Information

 
  • References

    • 2a Lovering F. Bikker J. Humblet C. J. Med. Chem. 2009; 52: 6752
    • 2b Schnurch M. Dastbaravardeh N. Ghobrial M. Mrozek BD. Mihovilovic M. Curr. Org. Chem. 2011; 15: 2694
    • 2c Ritchie TJ. Macdonald SJ. F. Young RJ. Pickett SD. Drug Discovery Today 2011; 16: 164
    • 2d Zhu Z. Tang X. Li J. Li X. Wu W. Deng G. Jiang H. Org. Lett. 2017; 19: 1370
    • 2e Song P. Yu P. Lin J.-S. Li Y. Yang N.-Y. Liu X.-Y. Org. Lett. 2017; 19: 1330
    • 2f Yan F. Liang H. Song J. Cui J. Liu Q. Liu S. Wang P. Dong Y. Liu H. Org. Lett. 2017; 19: 86
    • 3a Colby DA. Bergman RG. Ellman JA. Chem. Rev. 2010; 110: 624
    • 3b Engle KM. Mei TS. Wasa M. Yu J.-Q. Acc. Chem. Res. 2011; 45: 788
    • 3c Lu P. Wang Y. Chem. Soc. Rev. 2012; 41: 5687
    • 3d El-salam NM. A. Mostafa MS. Ahmed GA. Alothman OY. J. Chem. 2013; 1
    • 3e Azab ME. Youssef MM. El-Bordany EA. Molecules 2013; 18: 832
    • 3f Salem MS. Sakr SI. El-Senousy WM. Madkour HM. F. Arch. Pharm. (Weinheim) 2013; 346: 766
    • 3g Xu X. Doyle MP. Acc. Chem. Res. 2014; 47: 1396
    • 3h Xie J. Pan C. Abdukadera A. Zhu C. Chem. Soc. Rev. 2014; 43: 5245
    • 3i Cao X. Sun Z. Cao Y. Wang R. Cai T. Chu W. Hu W. Yang Y. J. Med. Chem. 2014; 57: 3687
    • 3j Chen Y. Yu K. Tan NY. Qiu RH. Liu W. Luo NL. Tong L. Au CT. Luo ZQ. Yin SF. Eur. J. Med. Chem. 2014; 79: 391
    • 3k Sharma UK. Sharma N. Vachhani DD. der Eycken EV. V. Chem. Soc. Rev. 2015; 44: 1836
    • 3l Yang L. Huang H. Chem. Rev. 2015; 115: 3468
    • 3m Martins P. Jesus J. Santos S. Raposo LR. Roma-Rodrigues C. Baptista PV. Fernandes AR. Molecules 2015; 20: 16852
    • 3n Yu J.-T. Pan C. Chem. Commun. 2016; 2220
    • 4a Felpin F.-X. Lebreton J. Eur. J. Org. Chem. 2003; 3693
    • 4b Ragaini F. Cenini S. Brignoli D. Gasperini M. Gallo E. J. Org. Chem. 2003; 68: 460
    • 4c Smitrovich JH. Davies IW. Org. Lett. 2004; 6: 533
    • 4d Pyne SG. Davis AS. Gates NJ. Hartley JP. Lindsay KB. Machan T. Tang M. Synlett 2004; 2670
    • 4e Coldham I. Hufton R. Chem. Rev. 2005; 105: 2765
    • 4f Bellina F. Rossi R. Tetrahedron 2006; 62: 7213
    • 4g Merisor E. Conrad J. Klaiber I. Mika S. Beifuss U. Angew. Chem. Int. Ed. 2007; 46: 3353
    • 4h Merisor E. Conrad J. Mika S. Beifuss U. Synlett 2007; 2033
    • 4i Merisor E. Beifuss U. Tetrahedron Lett. 2007; 48: 8383
    • 4j Ferretti F. Formenti D. Ragaini F. Rend. Lincei 2017; 28: 97
    • 4k El-Atawy MA. Ferretti F. Ragaini F. Eur. J. Org. Chem. 2017; 1902
    • 4l Formenti d. Ferretti F. Ragaini F. ChemCatChem 2018; 10: 148
  • 5 Mali M. Synth. Catal. 2017; 2: 2
    • 6a Cadogan JI. G. Cameron-Wood M. Proc. Chem. Soc. (London) 1962; 361
    • 6b Cadogan JI. G. Cameron-Wood M. Mackie RK. Searle RJ. G. J. Chem. Soc. 1965; 4831
    • 6c Sundberg RJ. Tetrahedron Lett. 1965; 477
    • 6d Cadogan JI. G. Todd MJ. J. Chem. Soc. C 1969; 2808
    • 6e Ho TL. Hsieh SY. Helv. Chim. Acta 2006; 89: 111
    • 6f Freeman AW. Urvoy M. Criswell ME. J. Org. Chem. 2005; 70: 5014
    • 6g Sanz R. Escribano J. Pedrosa MR. Aguado R. Arnaiz FJ. Adv. Synth. Catal. 2007; 349: 713
    • 7a Crotti C. Cenini S. Rindone B. Tollari S. Demartin F. J. Chem. Soc., Chem. Commun. 1986; 784
    • 7b Annunziata R. Cenini S. Palmisano G. Tollari S. Synth. Commun. 1996; 26: 495
    • 7c Söderberg BC. G. Wallace JM. Tamariz J. Org. Lett. 2002; 4: 1339
    • 7d Scott TL. Söderberg BC. G. Tetrahedron Lett. 2002; 43: 1621
    • 7e Han R. Chen S. Lee SJ. Qi F. Wu X. Kim BH. Heterocycles 2006; 68: 1675
    • 7f Wallace JM. Söderberg BC. G. Tamariz J. Akhmedov NG. Hurley MT. Tetrahedron 2008; 64: 9675
    • 8a Fernandes AC. Romáo CC. Tetrahedron 2006; 62: 9650
    • 8b Fernandes AC. Romáo CC. Tetrahedron Lett. 2007; 48: 9176
    • 8c Reis PM. Costa PJ. Romáo CC. Fernandes JA. Calhorda MJ. Royo B. Dalton Trans. 2008; 1727
    • 8d Reis PM. Royo B. Tetrahedron Lett. 2009; 50: 949
    • 9a Alper H. Edward JT. Can. J. Chem. 1970; 48: 1543
    • 9b Crotti C. Cenini S. Bossoli A. Rindone B. Demartin F. J. Mol. Catal. 1991; 70: 175
    • 9c Pizzotti M. Cenini S. Quici S. Tollari S. J. Chem. Soc., Perkin Trans. 2 1994; 913
    • 9d For a review, see: Söderberg BC. G. Curr. Org. Chem. 2000; 4: 727
    • 9e Smitrovich JH. Davies IW. Org. Lett. 2004; 6: 533
    • 9f Vodnala N. Kaldhi D. Polina S. Putta VP. R. K. Gupta R. Promily SC. P. Linthoinganbi RK. Singh V. Malakar CC. Tetrahedron Lett. 2016; 57: 5695
    • 10a Pizzotti M. Cenini S. Psaro R. Costanzi S. J. Mol. Catal. 1990; 63: 299
    • 10b Crotti C. Cenini C. J. Chem. Soc., Faraday Trans. 1991; 87: 2811
    • 10c Crotti C. Cenini S. Ragaini F. Porta F. Tollari S. J. Mol. Catal. 1992; 72: 283
  • 11 Sanz R. Escribano J. Aguado R. Pedrosa MR. Arnáiz FJ. Synthesis 2004; 1629
    • 12a Malakar CC. Merisor E. Conrad J. Beifuss U. Synlett 2010; 1766
    • 12b Moustafa AH. Malakar CC. Aljaar N. Merisor E. Conrad J. Beifuss U. Synlett 2013; 24: 1573
    • 12c Siddiqui IR. Srivastava A. Singh A. Shamim S. Rai P. RSC Adv. 2015; 5: 5256
    • 12d Vodnala N. Kaldhi D. Gupta R. Polina S. Putta VP. R. K. Promily SC. P. Linthoinganbi RK. Singh V. Malakar CC. ChemistrySelect 2016; 1: 5784
  • 13 Garcia N. Garcia-Garcia P. Fernindez-Rodriguez MA. Rubio R. Pedrosa MR. Arnaiz FJ. Sanz R. Adv. Synth. Catal. 2012; 354: 321; and references cited therein
  • 14 Gerber NN. J. Org. Chem. 1967; 32: 4055
  • 15 Toshima K. Takano R. Ozawa T. Matsumura S. Chem. Commun. 2002; 212
    • 16a Anderson RK. Carter SD. Cheeseman GW. H. Tetrahedron 1979; 35: 2463
    • 16b Zhang Z. Yin Z. Kadow JF. Meanwell NA. Wang T. Synlett 2004; 2323
    • 17a Kidani Y. Chem. Pharm. Bull. 1959; 7: 88
    • 17b Kumar BS. P. A. Madhav B. Reddy KH. V. Nageswar YV. D. Tetrahedron Lett. 2011; 52: 2862