Synthesis 2017; 49(02): 225-236
DOI: 10.1055/s-0036-1588892
short review
© Georg Thieme Verlag Stuttgart · New York

Insights into Copper-Poly(pyrazolyl)methane-Catalyzed Reactions for Organic Transformations

Julian Moegling
Lehrstuhl für Bioanorganische Chemie, Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   Email: [email protected]
,
Alexander Hoffmann
Lehrstuhl für Bioanorganische Chemie, Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   Email: [email protected]
,
Sonja Herres-Pawlis*
Lehrstuhl für Bioanorganische Chemie, Institut für Anorganische Chemie, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 31 August 2016

Accepted after revision: 06 September 2016

Publication Date:
18 October 2016 (online)


Dedicated to Prof. Dr. Dieter Enders on the occasion of his 70th birthday

Abstract

Copper-poly(pyrazolyl)methane complexes have been proven to be highly useful in a variety of catalytic organic transformations. A multitude of poly(pyrazolyl)methane ligands have been developed for this effort and are summarized in this work. Their tailored electronic properties and steric hindrance are easily modified, demonstrating their diversity and high potential as spectator ligands for copper catalysis. The listed examples of organic reactions range from cycloadditions to nitrene transfer and bioinorganic monooxygenase chemistry.

1 Introduction

2 Cycloadditions of Azides and Alkynes

3 Copper-Mediated Nitrene and Carbene Transfer

4 Csp–Csp2, C–N and C–S Cross-Coupling Reactions

5 Copper–Tpm-Catalyzed Aldol Reactions

6 A Bpm Ligand for the Polymerization of Methyl Methacrylate

7 Copper-Catalyzed Oxidations

8 Concluding Remarks

 
  • References

    • 1a Trofimenko S. Chem. Rev. 1993; 93: 943
    • 1b Trofimenko S. J. Chem. Educ. 2005; 82: 1715
    • 2a Byers PK, Canty AJ, Honeyman RT. J. Organomet. Chem. 1990; 385: 417
    • 2b Reger DL. Comments Inorg. Chem. 1999; 21: 1
    • 2c Otero A, Fernández-Baeza J, Antiñolo A, Tejeda J, Lara-Sánchez A. Dalton Trans. 2004; 1499
    • 2d Pettinari C, Pettinari R. Coord. Chem. Rev. 2005; 249: 525
    • 2e Pettinari C, Pettinari R. Coord. Chem. Rev. 2005; 249: 663
    • 2f Reger DL, Semeniuc JR, Gardinier JR, O’Neal J, Reinecke B, Smith MD. Inorg. Chem. 2006; 45: 4337
    • 2g Hoffmann A, Flörke U, Schürmann M, Herres-Pawlis S. Eur. J. Org. Chem. 2010; 4136
    • 2h Krieck S, Koch A, Hinze K, Müller C, Lange J, Görls H, Westerhausen M. Eur. J. Inorg. Chem. 2016; 2332
    • 2i Martins LM. D. R. S, Pombeiro AJ. L. Coord. Chem. Rev. 2014; 265: 74
    • 2j Otero A, Fernández-Baeza J, Lara-Sánchez A, Sánchez-Barba LF. Coord. Chem. Rev. 2013; 257: 1806
    • 2k Bigmore HR, Lawrence SC, Mountford P, Tredget CS. Dalton Trans. 2005; 635
    • 2l Martins LM. D. R. S, Pombeiro AJ. L. Eur. J. Inorg. Chem. 2016; 2236
    • 2m Semeniuc RF, Reger DL. Eur. J. Inorg. Chem. 2016; 2253
    • 2n Manzano BR, Jalón FA, Carrión MC, Durá G. Eur. J. Inorg. Chem. 2016; 2272
  • 3 Cano I, Nicasio MC, Pérez PJ. Org. Biomol. Chem. 2010; 8: 536
    • 4a Wang F, Fu H, Jiang Y, Zhao Y. Adv. Synth. Catal. 2008; 350: 1830
    • 4b Liu Y, Wang X, Xu J, Zhang Q, Zhao Y, Hu Y. Tetrahedron 2011; 67: 6294
    • 4c Wang K, Xing S, Liao P, Fang Z, Meng X, Zhang Q, Liu Q, Ji Y. Green Chem. 2011; 13: 562
    • 4d Longqiang X, Shaojun C, Liu Q, Liao L, Guo X, Li Y, Jia X, Li F, Liu L. Polym. Chem. 2014; 5: 607
    • 4e Saha S, Kaur M, Bera JK. Organometallics 2015; 34: 3047
    • 5a Cano I, Álvarez E, Nicasio MC, Pérez PJ. J. Am. Chem. Soc. 2011; 133: 191
    • 5b Haldón E, Besora M, Cano I, Cambeiro XC, Pericàs MA, Maseras F, Nicasio MC, Pérez PJ. Chem. Eur. J. 2014; 20: 3463
    • 6a Rodríguez P, Caballero A, Díaz-Requejo M, Nicasio MC, Pérez PJ. Org. Lett. 2006; 8: 557
    • 6b Rodríguez P, Álvarez E, Nicasio MC, Pérez PJ. Organometallics 2007; 26: 6661
  • 7 Cano I, Nicasio MC, Pérez PJ. Dalton Trans. 2009; 730
  • 8 Wilkes JS, Levisky JA, Wilson RA, Hussey CL. Inorg. Chem. 1982; 21: 1263
  • 9 Godau T, Bleifuß SM, Müller AL, Roth T, Hoffmann S, Heinemann FW, Burzlaff N. Dalton Trans. 2011; 40: 6547
  • 10 Haldón E, Álvarez E, Nicasio MC, Pérez PJ. Inorg. Chem. 2012; 51: 8298
  • 11 Moegling J, Benischke AD, Hammann JM, Vepřek NA, Zoller F, Rendenbach B, Hoffmann A, Sievers H, Schuster M, Knochel P, Herres-Pawlis S. Eur. J. Org. Chem. 2015; 7475
  • 12 Rocha BG. M, MacLeod TC. O, Guedes da Silva MF. C, Luzyanin KV, Martins LM. D. R. S, Pombeiro AJ. L. Dalton Trans. 2014; 43: 15192
  • 13 Liu G.-F, Li L.-L, Ren Z.-G, Li H.-X, Cheng Z.-P, Zhu J, Zhu X.-L, Lang J.-P. Macromol. Chem. Phys. 2009; 210: 1654
    • 14a Tolman WB, Que LJr. Nature 2008; 455: 333
    • 14b Rolff M, Schottenheim J, Decker H, Tuczek F. Chem. Soc. Rev. 2011; 40: 4077
    • 14c Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L. Chem. Rev. 2014; 114: 3659
    • 14d Citek C, Herres-Pawlis S, Stack TD. P. Acc. Chem. Res. 2015; 48: 2424
  • 15 Fujisawa K, Ono T, Ishikawa Y, Amir N, Miyashita Y, Okamoto K, Lehnert N. Inorg. Chem. 2006; 45: 1698
  • 16 Costas M, Llobet A. J. Mol. Catal. 1999; 142: 113
    • 17a Silva TF. S, Alegria EC. B. A, Martins LM. D. R. S, Pombeiro AJ. L. Adv. Synth. Catal. 2008; 350: 706
    • 17b Silva TF. S, Mishra GS, Guedes da Silva MF, Wanke R, Martins LM. D. R. S, Pombeiro AJ. L. Dalton Trans. 2009; 9207
    • 17c Silva TF. S, Rocha BG. M, Guedes da Silva MF, Martins LM. D. R. S, Pombeiro AJ. L. New J. Chem. 2016; 40: 528
    • 17d Martins LM. D. R. S, Pombeiro AJ. L In Advances in Organometallic Chemistry and Catalysis, The Silver/Gold Jubilee ICOMC Celebratory Book . 1st ed.; Pombeiro AJ. L. Wiley & Sons; Hoboken: 2014: 285
    • 17e Schuchardt U, Cardoso D, Sercheli R, Pereira R, da Cruz RS, Guerreiro MC, Mandelli D, Spinacé EV, Pires EL. Appl. Catal. 2001; 211: 1
  • 18 Schepetkin I, Potapov A, Khlebnikov A, Korotkova E, Lukina A, Malovichko G, Kirpotina L, Quinn MT. J. Biol. Inorg. Chem. 2006; 11: 499
  • 19 Gajewska MJ, Ching W.-M, Wen Y.-S, Hung C.-H. Dalton Trans. 2014; 43: 14726
  • 20 Quideau S, Deffieux D, Pouysegu L In Comprehensive Organic Synthesis II . 2nd ed.; Knochel P. Elsevier; Amsterdam: 2014: 656
    • 21a Hoffmann A, Citek C, Binder S, Goos A, Rübhausen M, Troeppner O, Ivanović-Burmazović I, Wasinger EC, Stack TD. P, Herres-Pawlis S. Angew. Chem. Int. Ed. 2013; 52: 5398
    • 21b Wilfer C, Liebhäuser P, Erdmann H, Hoffmann A, Herres-Pawlis S. Eur. J. Inorg. Chem. 2015; 494
    • 21c Wilfer C, Liebhäuser P, Hoffmann A, Erdmann H, Grossmann O, Runtsch L, Paffenholz E, Schepper R, Dick R, Bauer M, Dürr M, Ivanović-Burmazović I, Herres-Pawlis S. Chem. Eur. J. 2015; 21: 17639
    • 22a Hamann JN, Schneider R, Tuczek F. J. Coord. Chem. 2015; 68: 3259
    • 22b Rolff M, Schottenheim J, Peters G, Tuczek F. Angew. Chem. Int. Ed. 2010; 49: 6438 ; Angew. Chem. 2010, 122, 6583
    • 23a Esguerra KV. N, Fall J, Petitjean L, Lumb J.-P. J. Am. Chem. Soc. 2014; 136: 7662
    • 23b Huang Z, Askari MS, Esguerra KV. N, Dai T.-Y, Kwon O, Ottenwaelder X, Lumb J.-P. Chem. Sci. 2016; 7: 358
    • 24a Hoffmann A, Herres-Pawlis S. Chem. Commun. 2014; 50: 403
    • 24b Hoffmann A, Herres-Pawlis S. Phys. Chem. Chem. Phys. 2016; 18: 6430