Synthesis 2017; 49(18): 4272-4282
DOI: 10.1055/s-0036-1588435
special topic
© Georg Thieme Verlag Stuttgart · New York

Iridium-Catalyzed Intramolecular Oxidative Cyclization of Alkenyl Amides and Alkenoic Acids

Midori Nagamoto
Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan   Email: tnishi@sci.osaka-cu.ac.jp
,
,
Hideki Yorimitsu
Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan   Email: tnishi@sci.osaka-cu.ac.jp
› Author Affiliations
Japan Society for the Promotion of Science�, Grant / Award Number: 'JP15H03810'�.
Further Information

Publication History

Received: 31 March 2017

Accepted after revision: 02 May 2017

Publication Date:
13 June 2017 (eFirst)

Published as part of the Special Topic Modern Cyclization Strategies in Synthesis

Abstract

An iridium/dppf complex efficiently catalyzed the oxidative cyclization of N-sulfonyl alkenyl amides and alkenoic acids. Electron-deficien­t alkenes were effective as sacrificial hydrogen acceptors. High selectivity of the oxidative cyclization over the competing addition reaction has been realized by the use of NaI as an additive.

Supporting Information

 
  • References

  • 1 Present Address: Department of Chemistry, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto Sumiyoshi-ku, Osaka 558-8585, Japan.

    • For recent reviews, see:
    • 2a Baiju TV. Gravel E. Doris E. Namboothiri IN. N. Tetrahedron Lett. 2016; 57: 3993
    • 2b Obora Y. Ishii Y. Catalysts 2013; 3: 794
    • 2c McDonald RI. Liu G. Stahl SS. Chem. Rev. 2011; 111: 2981
    • 2d Minatti A. Muñiz K. Chem. Soc. Rev. 2007; 36: 1142
    • 2e Kotov V. Scarborough CC. Stahl SS. Inorg. Chem. 2007; 46: 1910
    • 2f Beller M. Breindl C. Eichberger M. Hartung CG. Seayad J. Thiel OR. Tillack A. Trauthwein H. Synlett 2002; 1579
    • 2g Müller TE. Beller M. Chem. Rev. 1998; 98: 675

      For pioneering works on Wacker oxidation, see:
    • 3a Smidt J. Hafner W. Jira R. Sieber R. Sedlmeier J. Sabel A. Angew. Chem., Int. Ed. Engl. 1962; 1: 80
    • 3b Hegedus LS. Allen GF. Bozell JJ. Waterman EL. J. Am. Chem. Soc. 1978; 100: 5800
    • 3c Tsuji J. Synthesis 1984; 369
    • 4a Brunet J.-J. Nelbecker D. Philippot K. Tetrahedron Lett. 1993; 34: 3877
    • 4b Beller M. Trauthwein H. Eichberger M. Breindl C. Herwig J. Müller TE. Thiel OR. Chem. Eur. J. 1999; 5: 1306
    • 4c Utsunomiya M. Kuwano R. Kawatsura M. Hartwig JF. J. Am. Chem. Soc. 2003; 125: 5608
    • 4d Jiménez MV. Pérez-Torrente JJ. Bartolomé MI. Lahoz FJ. Oro LA. Chem. Commun. 2010; 46: 5322
    • 4e Jiménez MV. Bartolomé MI. Pérez-Torrente JJ. Lahoz FJ. Oro LA. ChemCatChem 2012; 4: 1298
    • 4f Jiménez MV. Bartolomé MI. Pérez-Torrente JJ. Gómez D. Modrego FJ. Oro LA. ChemCatChem 2013; 5: 263
    • 5a Lu J. Jin H. Liu H. Jiang Y. Fu H. Org. Lett. 2011; 13: 3694
    • 5b Liwosz TW. Chemler SR. Chem. Eur. J. 2013; 19: 12771
    • 5c Xiong P. Xu F. Qian X.-Y. Yohannes Y. Song J. Lu X. Xu H.-C. Chem. Eur. J. 2016; 22: 4379

      Ru:
    • 6a Arockian PB. Bruneau C. Dixneuf PH. Chem. Rev. 2012; 112: 5879

    • Ag:
    • 6b Carrillo-Arcos UA. Rojas-Ocampo J. Porcel S. Dalton Trans. 2016; 45: 479

      For recent examples of catalytic oxidative functionalization of alkenes without transition metals, see:
    • 7a Trenner J. Depken C. Weber T. Breder A. Angew. Chem. Int. Ed. 2013; 52: 8952
    • 7b Kawamata Y. Hashimoto T. Maruoka K. J. Am. Chem. Soc. 2016; 138: 5206
    • 7c Zhang G. Hu X. Chiang C.-W. Yi H. Pei P. Singh AK. Lei A. J. Am. Chem. Soc. 2016; 138: 12037
    • 7d Yi H. Niu L. Song C. Li Y. Dou B. Singh AK. Lei A. Angew. Chem. Int. Ed. 2017; 56: 1120

      For recent reviews, see:
    • 8a Huang L. Arndt M. Gooßen K. Heydt H. Gooßen LK. Chem. Rev. 2015; 115: 2596
    • 8b Patil NT. Kavthe RD. Shinde VS. Tetrahedron 2012; 68: 8079
    • 8c Hesp KD. Stradiotto M. ChemCatChem 2010; 2: 1192
    • 9a Nagamoto M. Nishimura T. Chem. Commun. 2015; 51: 13466
    • 9b Nagamoto M. Yanagi T. Nishimura T. Yorimitsu H. Org. Lett. 2016; 18: 4474
    • 10a Dorta R. Egli P. Zürcher F. Togni A. J. Am. Chem. Soc. 1997; 119: 10857
    • 10b Zhou J. Hartwig JF. J. Am. Chem. Soc. 2008; 130: 12220
    • 10c Hesp KD. Tobisch S. Stradiotto M. J. Am. Chem. Soc. 2010; 132: 413
    • 10d Pan S. Endo K. Shibata T. Org. Lett. 2012; 14: 780
    • 10e Sevov CS. Zhou J. Hartwig JF. J. Am. Chem. Soc. 2012; 134: 11960
    • 10f Sevov CS. Hartwig JF. J. Am. Chem. Soc. 2013; 135: 9303
    • 10g Sevov CS. Zhou J. Hartwig JF. J. Am. Chem. Soc. 2014; 136: 3200
    • 11a Cheng C. Simmons EM. Hartwig JF. Angew. Chem. Int. Ed. 2013; 52: 8984
    • 11b Li Q. Driess M. Hartwig JF. Angew. Chem. Int. Ed. 2014; 53: 8471
    • 11c Cheng C. Hartwig JF. J. Am. Chem. Soc. 2015; 137: 592
    • 11d Murai M. Takami K. Takai K. Chem. Eur. J. 2015; 21: 4566
    • 11e Murai M. Takami K. Takeshima H. Takai K. Org. Lett. 2015; 17: 1798
  • 12 Yamagata T. Tadaoka H. Nagata M. Hirao T. Kataoka Y. Ratovelomanana-Vidal V. Genet JP. Mashima K. Organometallics 2006; 25: 2505
  • 13 Hanley PS. Hartwig JF. Angew. Chem. Int. Ed. 2013; 52: 8510
  • 14 Uson R. Oro LA. Cabeza JA. Inorg. Synth. 1985; 23: 126
  • 15 Green LM. Meek DW. Organometallics 1989; 8: 659
  • 16 Nicolai S. Piemontesi C. Waser J. Angew. Chem. Int. Ed. 2011; 50: 4680
  • 17 Takeuchi R. Ue N. Tanabe K. Yamashita K. Shiga N. J. Am. Chem. Soc. 2001; 123: 9525
  • 18 Barczak NT. Jarvo ER. Chem. Eur. J. 2011; 17: 12912
  • 19 Innitzer A. Brecker L. Mulzer J. Org. Lett. 2007; 9: 4431