Synthesis, Inhaltsverzeichnis Synthesis 2017; 49(18): 4272-4282DOI: 10.1055/s-0036-1588435 special topic © Georg Thieme Verlag Stuttgart · New YorkIridium-Catalyzed Intramolecular Oxidative Cyclization of Alkenyl Amides and Alkenoic Acids Midori Nagamoto Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan eMail: tnishi@sci.osaka-cu.ac.jp , Takahiro Nishimura * , Hideki Yorimitsu Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan eMail: tnishi@sci.osaka-cu.ac.jp› InstitutsangabenArtikel empfehlen Abstract Artikel einzeln kaufen Alle Artikel dieser Rubrik Published as part of the Special Topic Modern Cyclization Strategies in Synthesis Abstract An iridium/dppf complex efficiently catalyzed the oxidative cyclization of N-sulfonyl alkenyl amides and alkenoic acids. Electron-deficient alkenes were effective as sacrificial hydrogen acceptors. High selectivity of the oxidative cyclization over the competing addition reaction has been realized by the use of NaI as an additive. Key words Key wordsiridium - oxidative functionalization - alkenes - amides - carboxylic acids Volltext Referenzen References 1 Present Address: Department of Chemistry, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto Sumiyoshi-ku, Osaka 558-8585, Japan. For recent reviews, see: 2a Baiju TV. Gravel E. Doris E. Namboothiri IN. N. Tetrahedron Lett. 2016; 57: 3993 2b Obora Y. Ishii Y. Catalysts 2013; 3: 794 2c McDonald RI. Liu G. Stahl SS. Chem. Rev. 2011; 111: 2981 2d Minatti A. Muñiz K. Chem. Soc. Rev. 2007; 36: 1142 2e Kotov V. Scarborough CC. Stahl SS. Inorg. Chem. 2007; 46: 1910 2f Beller M. Breindl C. Eichberger M. Hartung CG. Seayad J. Thiel OR. Tillack A. Trauthwein H. Synlett 2002; 1579 2g Müller TE. Beller M. Chem. Rev. 1998; 98: 675 For pioneering works on Wacker oxidation, see: 3a Smidt J. Hafner W. Jira R. Sieber R. Sedlmeier J. Sabel A. Angew. Chem., Int. Ed. Engl. 1962; 1: 80 3b Hegedus LS. Allen GF. Bozell JJ. Waterman EL. J. Am. Chem. Soc. 1978; 100: 5800 3c Tsuji J. Synthesis 1984; 369 4a Brunet J.-J. Nelbecker D. Philippot K. Tetrahedron Lett. 1993; 34: 3877 4b Beller M. Trauthwein H. Eichberger M. Breindl C. Herwig J. Müller TE. Thiel OR. Chem. Eur. J. 1999; 5: 1306 4c Utsunomiya M. Kuwano R. Kawatsura M. Hartwig JF. J. Am. Chem. Soc. 2003; 125: 5608 4d Jiménez MV. Pérez-Torrente JJ. Bartolomé MI. Lahoz FJ. Oro LA. Chem. Commun. 2010; 46: 5322 4e Jiménez MV. Bartolomé MI. Pérez-Torrente JJ. Lahoz FJ. Oro LA. ChemCatChem 2012; 4: 1298 4f Jiménez MV. Bartolomé MI. Pérez-Torrente JJ. Gómez D. Modrego FJ. Oro LA. ChemCatChem 2013; 5: 263 5a Lu J. Jin H. Liu H. Jiang Y. Fu H. Org. Lett. 2011; 13: 3694 5b Liwosz TW. Chemler SR. Chem. Eur. J. 2013; 19: 12771 5c Xiong P. Xu F. Qian X.-Y. Yohannes Y. Song J. Lu X. Xu H.-C. Chem. Eur. J. 2016; 22: 4379 Ru: 6a Arockian PB. Bruneau C. Dixneuf PH. Chem. Rev. 2012; 112: 5879 Ag: 6b Carrillo-Arcos UA. Rojas-Ocampo J. Porcel S. Dalton Trans. 2016; 45: 479 For recent examples of catalytic oxidative functionalization of alkenes without transition metals, see: 7a Trenner J. Depken C. Weber T. Breder A. Angew. Chem. Int. Ed. 2013; 52: 8952 7b Kawamata Y. Hashimoto T. Maruoka K. J. Am. Chem. Soc. 2016; 138: 5206 7c Zhang G. Hu X. Chiang C.-W. Yi H. Pei P. Singh AK. Lei A. J. Am. Chem. Soc. 2016; 138: 12037 7d Yi H. Niu L. Song C. Li Y. Dou B. Singh AK. Lei A. Angew. Chem. Int. Ed. 2017; 56: 1120 For recent reviews, see: 8a Huang L. Arndt M. Gooßen K. Heydt H. Gooßen LK. Chem. Rev. 2015; 115: 2596 8b Patil NT. Kavthe RD. Shinde VS. Tetrahedron 2012; 68: 8079 8c Hesp KD. Stradiotto M. ChemCatChem 2010; 2: 1192 9a Nagamoto M. Nishimura T. Chem. Commun. 2015; 51: 13466 9b Nagamoto M. Yanagi T. Nishimura T. Yorimitsu H. Org. Lett. 2016; 18: 4474 10a Dorta R. Egli P. Zürcher F. Togni A. J. Am. Chem. Soc. 1997; 119: 10857 10b Zhou J. Hartwig JF. J. Am. Chem. Soc. 2008; 130: 12220 10c Hesp KD. Tobisch S. Stradiotto M. J. Am. Chem. Soc. 2010; 132: 413 10d Pan S. Endo K. Shibata T. Org. Lett. 2012; 14: 780 10e Sevov CS. Zhou J. Hartwig JF. J. Am. Chem. Soc. 2012; 134: 11960 10f Sevov CS. Hartwig JF. J. Am. Chem. Soc. 2013; 135: 9303 10g Sevov CS. Zhou J. Hartwig JF. J. Am. Chem. Soc. 2014; 136: 3200 11a Cheng C. Simmons EM. Hartwig JF. Angew. Chem. Int. Ed. 2013; 52: 8984 11b Li Q. Driess M. Hartwig JF. Angew. Chem. Int. Ed. 2014; 53: 8471 11c Cheng C. Hartwig JF. J. Am. Chem. Soc. 2015; 137: 592 11d Murai M. Takami K. Takai K. Chem. Eur. J. 2015; 21: 4566 11e Murai M. Takami K. Takeshima H. Takai K. Org. Lett. 2015; 17: 1798 12 Yamagata T. Tadaoka H. Nagata M. Hirao T. Kataoka Y. Ratovelomanana-Vidal V. Genet JP. Mashima K. Organometallics 2006; 25: 2505 13 Hanley PS. Hartwig JF. Angew. Chem. Int. Ed. 2013; 52: 8510 14 Uson R. Oro LA. Cabeza JA. Inorg. Synth. 1985; 23: 126 15 Green LM. Meek DW. Organometallics 1989; 8: 659 16 Nicolai S. Piemontesi C. Waser J. Angew. Chem. Int. Ed. 2011; 50: 4680 17 Takeuchi R. Ue N. Tanabe K. Yamashita K. Shiga N. J. Am. Chem. Soc. 2001; 123: 9525 18 Barczak NT. Jarvo ER. Chem. Eur. J. 2011; 17: 12912 19 Innitzer A. Brecker L. Mulzer J. Org. Lett. 2007; 9: 4431 Zusatzmaterial Zusatzmaterial Supporting Information