J Knee Surg 2017; 30(02): 097-106
DOI: 10.1055/s-0036-1581137
Original Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Optimizing Graft Placement in Anterior Cruciate Ligament Reconstruction: A Finite Element Analysis

Robert W. Westermann
1   Department of Orthopaedic Surgery, University of Iowa, Iowa City, Iowa
,
Brian R. Wolf
2   Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, Iowa
,
Jacob Elkins
2   Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City, Iowa
› Author Affiliations
Further Information

Publication History

22 July 2015

21 February 2016

Publication Date:
27 April 2016 (online)

Abstract

Femoral anterior cruciate ligament (ACL) graft malposition may lead to clinical instability and graft failure. The purpose of this study was to evaluate the effect of ACL graft placement on global knee biomechanics using finite element (FE) analysis. An established nonlinear contact FE model was used to evaluate 25 distinct tunnel loci representing primary ACL reconstructions; knee flexion and a simulated Lachman maneuver was used to assess knee joint laxity, meniscal stress, in situ graft loading, and peak articular cartilage contact pressure for each of the tunnel positions. Increased anterior tibial translation during Lachman testing was observed when the femoral graft was moved from anterior, anterior/inferior, and posterior/inferior relative to the anatomic footprint. Cartilage contact pressure and meniscal stresses increased with anterior graft placement. Peak stresses in the ACL grafts increased with significant posterior and inferior placement (5–7.5 mm) from the anatomic location. Global joint biomechanics are lease favorable with anterior graft placement. Excessive posterior/inferior placement (> 5 mm) may subject grafts to increased pressures.

 
  • References

  • 1 Lyman S, Koulouvaris P, Sherman S, Do H, Mandl LA, Marx RG. Epidemiology of anterior cruciate ligament reconstruction: trends, readmissions, and subsequent knee surgery. J Bone Joint Surg Am 2009; 91 (10) 2321-2328
  • 2 Frank CB, Jackson DW. The science of reconstruction of the anterior cruciate ligament. J Bone Joint Surg Am 1997; 79 (10) 1556-1576
  • 3 Spindler KP, Wright RW. Clinical practice. Anterior cruciate ligament tear. N Engl J Med 2008; 359 (20) 2135-2142
  • 4 Paxton ES, Kymes SM, Brophy RH. Cost-effectiveness of anterior cruciate ligament reconstruction: a preliminary comparison of single-bundle and double-bundle techniques. Am J Sports Med 2010; 38 (12) 2417-2425
  • 5 Noyes FR, Barber-Westin SD. Revision anterior cruciate surgery with use of bone-patellar tendon-bone autogenous grafts. J Bone Joint Surg Am 2001; 83-A (8) 1131-1143
  • 6 Garofalo R, Djahangiri A, Siegrist O. Revision anterior cruciate ligament reconstruction with quadriceps tendon-patellar bone autograft. Arthroscopy 2006; 22 (2) 205-214
  • 7 Lohmander LS, Englund PM, Dahl LL, Roos EM. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med 2007; 35 (10) 1756-1769
  • 8 Dargel J, Schmidt-Wiethoff R, Fischer S, Mader K, Koebke J, Schneider T. Femoral bone tunnel placement using the transtibial tunnel or the anteromedial portal in ACL reconstruction: a radiographic evaluation. Knee Surg Sports Traumatol Arthrosc 2009; 17 (3) 220-227
  • 9 Zavras TD, Race A, Bull AM, Amis AA. A comparative study of ‘isometric’ points for anterior cruciate ligament graft attachment. Knee Surg Sports Traumatol Arthrosc 2001; 9 (1) 28-33
  • 10 Bird JH, Carmont MR, Dhillon M , et al. Validation of a new technique to determine midbundle femoral tunnel position in anterior cruciate ligament reconstruction using 3-dimensional computed tomography analysis. Arthroscopy 2011; 27 (9) 1259-1267
  • 11 Arnold MP, Verdonschot N, van Kampen A. The normal anterior cruciate ligament as a model for tensioning strategies in anterior cruciate ligament grafts. Am J Sports Med 2005; 33 (2) 277-283
  • 12 Arnold MP, Verdonschot N, van Kampen A. ACL graft can replicate the normal ligament's tension curve. Knee Surg Sports Traumatol Arthrosc 2005; 13 (8) 625-631
  • 13 Kato Y, Maeyama A, Lertwanich P , et al. Biomechanical comparison of different graft positions for single-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2013; 21 (4) 816-823
  • 14 Kopf S, Forsythe B, Wong AK , et al. Nonanatomic tunnel position in traditional transtibial single-bundle anterior cruciate ligament reconstruction evaluated by three-dimensional computed tomography. J Bone Joint Surg Am 2010; 92 (6) 1427-1431
  • 15 Smolinski P, O'Farrell M, Bell K, Gilbertson L, Fu FH. Effect of ACL reconstruction tunnels on stress in the distal femur. Knee Surg Sports Traumatol Arthrosc 2013; 21 (4) 839-845
  • 16 Andriacchi TP, Briant PL, Bevill SL, Koo S. Rotational changes at the knee after ACL injury cause cartilage thinning. Clin Orthop Relat Res 2006; 442 (442) 39-44
  • 17 Westermann RW, Wolf BR, Elkins JM. Effect of ACL reconstruction graft size on simulated Lachman testing: a finite element analysis. Iowa Orthop J 2013; 33: 70-77
  • 18 Sibole S, Bennetts C, Borotikar B , et al. Open knee: a 3D finite element representation of the knee joint, 34th Annual Meeting of the American Society of Biomechanics. August 18–21, 2010
  • 19 Westermann R, Sybrowsky C, Ramme A, Amedola A, Wolf BR. Three-dimensional characterization of the anterior cruciate ligament's femoral footprint. J Knee Surg 2014; 27 (1) 53-58
  • 20 Forsythe B, Kopf S, Wong AK , et al. The location of femoral and tibial tunnels in anatomic double-bundle anterior cruciate ligament reconstruction analyzed by three-dimensional computed tomography models. J Bone Joint Surg Am 2010; 92 (6) 1418-1426
  • 21 Sommer C, Friederich NF, Müller W. Improperly placed anterior cruciate ligament grafts: correlation between radiological parameters and clinical results. Knee Surg Sports Traumatol Arthrosc 2000; 8 (4) 207-213
  • 22 Loh JC, Fukuda Y, Tsuda E, Steadman RJ, Fu FH, Woo SL. Knee stability and graft function following anterior cruciate ligament reconstruction: comparison between 11 o'clock and 10 o'clock femoral tunnel placement. 2002 Richard O'Connor Award paper. Arthroscopy 2003; 19 (3) 297-304
  • 23 Xu Y, Liu J, Kramer S , et al. Comparison of in situ forces and knee kinematics in anteromedial and high anteromedial bundle augmentation for partially ruptured anterior cruciate ligament. Am J Sports Med 2011; 39 (2) 272-278
  • 24 Toman CV, Dunn WR, Spindler KP , et al. Success of meniscal repair at anterior cruciate ligament reconstruction. Am J Sports Med 2009; 37 (6) 1111-1115
  • 25 Westermann RW, Wright RW, Spindler KP, Huston LJ, Wolf BR ; MOON Knee Group. Meniscal repair with concurrent anterior cruciate ligament reconstruction: operative success and patient outcomes at 6-year follow-up. Am J Sports Med 2014; 42 (9) 2184-2192
  • 26 Gadikota HR, Sim JA, Hosseini A, Gill TJ, Li G. The relationship between femoral tunnels created by the transtibial, anteromedial portal, and outside-in techniques and the anterior cruciate ligament footprint. Am J Sports Med 2012; 40 (4) 882-888
  • 27 McConkey MO, Amendola A, Ramme AJ , et al; MOON Knee Group. Arthroscopic agreement among surgeons on anterior cruciate ligament tunnel placement. Am J Sports Med 2012; 40 (12) 2737-2746
  • 28 Wahl CJ, Westermann RW, Blaisdell GY, Cizik AM. An association of lateral knee sagittal anatomic factors with non-contact ACL injury: sex or geometry?. J Bone Joint Surg Am 2012; 94 (3) 217-226