Horm Metab Res 2016; 48(02): 83-91
DOI: 10.1055/s-0035-1565181
Review
© Georg Thieme Verlag KG Stuttgart · New York

Cerebrovascular Complications of Diabetes: Alpha Glucosidase Inhibitor as Potential Therapy

S. S. Patel
1   Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
› Author Affiliations
Further Information

Publication History

received 18 August 2015

accepted 16 October 2015

Publication Date:
17 November 2015 (online)

Abstract

Increased risk of cerebrovascular accident in diabetes cannot be fully explained by traditional risk factors. Epidemiological studies show that postprandial hyperglycemia is strongly associated with cerebrovascular events and cerebrovascular-associated mortality. Postprandial hyperglycemia contributes to vascular damage by several mechanisms such as endothelial dysfunction, arthrosclerosis, oxidative stress, inflammation, and hypercoagulability. Hyperglycemia has deleterious effects on the vascular endothelium and leads to the development of cerebrovascular disease. Thus, an important strategy to reduce cerebrovascular risk in patients with diabetes is to reduce postprandial hyperglycemia. Glucagon-like peptide-1 receptor agonists, dipeptidyl peptidase-4 inhibitors, and α-glucosidase inhibitors predominantly reduce postprandial plasma glucose levels. Among all of these, α-glucosidase inhibitors reduces postprandial hyperglycemia by delaying carbohydrate absorption from the intestine and this mechanism provides glycemic control without exacerbating coexisting cerebrovascular risk factors. Good glycemic control is proven to reduce the risk of cardiovascular complications, but equivalent evidence for cerebrovascular risk reduction is lacking. This review examines the evidences that postprandial hyperglycemia plays a major role in vascular damage, along with the complex interplay between hyperglycemia and coexisting risk factors. Furthermore, the mechanism by which α-glucosidase inhibitors may prevent this vascular damage as well as risk of hypoglycemia with α-glucosidase inhibitors are examined. Thus, this review suggests that α-glucosidase inhibitors are useful in reducing the risk of cerebrovascular events in patients with diabetes.

 
  • References

  • 1 Zhang M, Chen P, Chen S, Sun Q, Zeng QC, Chen JY, Liu YX, Cao XH, Ren M, Wang JK. The association of new inflammatory markers with type 2 diabetes mellitus and macrovascular complications: a preliminary study. Eur Rev Med Pharmacol Sci 2014; 18: 1567-1572
  • 2 Woodruff TM, Thundyil J, Tang SC, Sobey CG, Taylor SM, Arumugam TV. Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol Neurodegener 2011; 6: 11
  • 3 Seshadri S, Beiser A, Kelly-Hayes M, Kase CS, Au R, Kannel WB, Wolf PA. The lifetime risk of stroke: estimates from the Framingham Study. Stroke 2006; 37: 345-350
  • 4 Shah B, Mathur P. Workshop Report on Stroke Surveillance in India. Division of Noncommunicable Diseases. Indian Council of Medical Research; New Delhi: 2006
  • 5 Giorda CB, Avogaro A, Maggini M, Lombardo F, Mannucci E, Turco S, Alegiani SS, Raschetti R, Velussi M, Ferrannini E. Group DAIS . Incidence and risk factors for stroke in type 2 diabetic patients: the DAI study. Stroke 2007; 38: 1154-1160
  • 6 Kissela BM, Khoury J, Kleindorfer D, Woo D, Schneider A, Alwell K, Miller R, Ewing I, Moomaw CJ, Szaflarski JP, Gebel J, Shukla R, Broderick JP. Epidemiology of ischemic stroke in patients with diabetes: the greater Cincinnati/Northern Kentucky Stroke Study. Diabetes Care 2005; 28: 355-359
  • 7 Marso SP, Kennedy KF, House JA, McGuire DK. The effect of intensive glucose control on all-cause and cardiovascular mortality, myocardial infarction and stroke in persons with type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes Vasc Dis Res 2010; 7: 119-130
  • 8 Sturgeon JD, Folsom AR, Longstreth Jr WT, Shahar E, Rosamond WD, Cushman M. Risk factors for intracerebral hemorrhage in a pooled prospective study. Stroke 2007; 38: 2718-2725
  • 9 Rosamond WD, Folsom AR, Chambless LE, Wang CH, McGovern PG, Howard G, Copper LS, Shahar E. Stroke incidence and survival among middle-aged adults: 9-year follow-up of the Atherosclerosis Risk in Communities (ARIC) cohort. Stroke 1999; 30: 736-743
  • 10 McEwen BS, Reagan LP. Glucose transporter expression in the central nervous system: relationship to synaptic function. Eur J Pharmacol 2004; 490: 13-24
  • 11 Haidari M, Zhang W, Willerson JT, Dixon RA. Disruption of endothelial adherens junctions by high glucose is mediated by protein kinase C-beta-dependent vascular endothelial cadherin tyrosine phosphorylation. Cardiovascul Diabetol 2014; 13: 112
  • 12 Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414: 813-820
  • 13 Du X, Matsumura T, Edelstein D, Rossetti L, Zsengeller Z, Szabo C, Brownlee M. Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Investig 2003; 112: 1049-1057
  • 14 Martini SR, Kent TA. Hyperglycemia in acute ischemic stroke: a vascular perspective. J Cereb Blood Flow Metab 2007; 27: 435-451
  • 15 Vazzana N, Ranalli P, Cuccurullo C, Davi G. Diabetes mellitus and thrombosis. Thromb Res 2012; 129: 371-377
  • 16 Fagot-Campagna A, Rolka DB, Beckles GL, Gregg EW, Narayan KM. Prevalence of lipid ablormalities, awareness, and treatment in US adults with diabetes (Abstract). Diabetes 2000; 49 (Suppl. 01) A78
  • 17 Festa A, D’Agostino Jr R, Mykkanen L, Tracy RP, Hales CN, Howard BV, Haffner SM. LDL particle size in relation to insulin, proinsulin, and insulin sensitivity. The Insulin Resistance Atherosclerosis Study. Diabetes Care 1999; 22: 1688-1693
  • 18 Chan AC. Vitamin E and atherosclerosis. J Nutr 1998; 128: 1593-1596
  • 19 Gomes MB, Piccirillo LJ, Nogueira VG, Matos HJ. Acute-phase proteins among patients with type 1 diabetes. Diabetes Metab 2003; 29: 405-411
  • 20 Esposito K, Giugliano D, Nappo F, Marfella R. Campanian Postprandial Hyperglycemia Study G . Regression of carotid atherosclerosis by control of postprandial hyperglycemia in type 2 diabetes mellitus. Circulation 2004; 110: 214-219
  • 21 Gonzalez-Clemente JM, Mauricio D, Richart C, Broch M, Caixas A, Megia A, Gimenez-Palop O, Simon I, Martinez-Riquelme A, Gimenez-Perez G, Vendrell J. Diabetic neuropathy is associated with activation of the TNF-alpha system in subjects with type 1 diabetes mellitus. Clin Endocrinol 2005; 63: 525-529
  • 22 Ritter LS, Orozco JA, Coull BM, McDonagh PF, Rosenblum WI. Leukocyte accumulation and hemodynamic changes in the cerebral microcirculation during early reperfusion after stroke. Stroke 2000; 31: 1153-1161
  • 23 Joussen AM, Poulaki V, Qin W, Kirchhof B, Mitsiades N, Wiegand SJ, Rudge J, Yancopoulos GD, Adamis AP. Retinal vascular endothelial growth factor induces intercellular adhesion molecule-1 and endothelial nitric oxide synthase expression and initiates early diabetic retinal leukocyte adhesion in vivo. Am J Pathol 2002; 160: 501-509
  • 24 Bemeur C, Ste-Marie L, Desjardins P, Vachon L, Butterworth RF, Hazell AS, Montgomery J. Dehydroascorbic acid normalizes several markers of oxidative stress and inflammation in acute hyperglycemic focal cerebral ischemia in the rat. Neurochem Int 2005; 46: 399-407
  • 25 Lin B, Ginsberg MD, Busto R, Li L. Hyperglycemia triggers massive neutrophil deposition in brain following transient ischemia in rats. Neuroscience letters 2000; 278: 1-4
  • 26 Ste-Marie L, Hazell AS, Bemeur C, Butterworth R, Montgomery J. Immunohistochemical detection of inducible nitric oxide synthase, nitrotyrosine and manganese superoxide dismutase following hyperglycemic focal cerebral ischemia. Brain Res 2001; 918: 10-19
  • 27 Xie H, Ray PE, Short BL. NF-kappaB activation plays a role in superoxide-mediated cerebral endothelial dysfunction after hypoxia/reoxygenation. Stroke 2005; 36: 1047-1052
  • 28 Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes 2005; 54: 1615-1625
  • 29 Carr ME. Diabetes mellitus: a hypercoagulable state. Journal of diabetes and its complications 2001; 15: 44-54
  • 30 Vinik AI, Erbas T, Park TS, Nolan R, Pittenger GL. Platelet dysfunction in type 2 diabetes. Diabetes Care 2001; 24: 1476-1485
  • 31 Thornalley PJ. Glycation in diabetic neuropathy: characteristics, consequences, causes, and therapeutic options. Int Rev Neurobiol 2002; 50: 37-57
  • 32 Singh R, Barden A, Mori T, Beilin L. Advanced glycation end-products: a review. Diabetologia 2001; 44: 129-146
  • 33 Thornalley PJ, Langborg A, Minhas HS. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J 1999; 344 (Pt 1) 109-116
  • 34 Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, Hotta K, Nishida M, Takahashi M, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y. Adiponectin an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation 2000; 102: 1296-1301
  • 35 Soriano FG, Virag L, Szabo C. Diabetic endothelial dysfunction: role of reactive oxygen and nitrogen species production and poly(ADP-ribose) polymerase activation. Journal of molecular medicine 2001; 79: 437-448
  • 36 Madonna R, De Caterina R. Cellular and molecular mechanisms of vascular injury in diabetes – part I: pathways of vascular disease in diabetes. Vascular pharmacology 2011; 54: 68-74
  • 37 Schafer A, Bauersachs J. Endothelial dysfunction, impaired endogenous platelet inhibition and platelet activation in diabetes and atherosclerosis. Curr Vasc Pharmacol 2008; 6: 52-60
  • 38 Wink DA, Mitchell JB. Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radical Biol Med 1998; 25: 434-456
  • 39 Iadecola C, Xu X, Zhang F, El-Fakahany EE, Ross ME. Marked induction of calcium-independent nitric oxide synthase activity after focal cerebral ischemia. J Cereb Blood Flow Metab 1995; 15: 52-59
  • 40 Fujimura M, Morita-Fujimura Y, Kawase M, Copin JC, Calagui B, Epstein CJ, Chan PH. Manganese superoxide dismutase mediates the early release of mitochondrial cytochrome C and subsequent DNA fragmentation after permanent focal cerebral ischemia in mice. J Neurosci 1999; 19: 3414-3422
  • 41 Marfella R, Quagliaro L, Nappo F, Ceriello A, Giugliano D. Acute hyperglycemia induces an oxidative stress in healthy subjects. J Clin Invest 2001; 108: 635-636
  • 42 Zhang Z, Apse K, Pang J, Stanton RC. High glucose inhibits glucose-6-phosphate dehydrogenase via cAMP in aortic endothelial cells. J Biol Chem 2000; 275: 40042-40047
  • 43 Brzezinska AK, Gebremedhin D, Chilian WM, Kalyanaraman B, Elliott SJ. Peroxynitrite reversibly inhibits Ca(2+)-activated K(+) channels in rat cerebral artery smooth muscle cells. Am J Physiol Heart Circ Physiol 2000; 278: H1883-H1890
  • 44 Ceriello A, Falleti E, Motz E, Taboga C, Tonutti L, Ezsol Z, Gonano F, Bartoli E. Hyperglycemia-induced circulating ICAM-1 increase in diabetes mellitus: the possible role of oxidative stress. Horm Metab Res 1998; 30: 146-149
  • 45 Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA 2002; 287: 2570-2581
  • 46 Matsumoto K, Sera Y, Abe Y, Tominaga T, Yeki Y, Miyake S. Metformin attenuates progression of carotid arterial wall thickness in patients with type 2 diabetes. Diabetes Res Clin Pract 2004; 64: 225-228
  • 47 Wilcox R, Bousser MG, Betteridge DJ, Schernthaner G, Pirags V, Kupfer S, Dormandy J. Investigators PR . Effects of pioglitazone in patients with type 2 diabetes with or without previous stroke: results from PROactive (PROspective pioglitAzone Clinical Trial In macroVascular Events 04). Stroke 2007; 38: 865-873
  • 48 Simard JM, Yurovsky V, Tsymbalyuk N, Melnichenko L, Ivanova S, Gerzanich V. Protective effect of delayed treatment with low-dose glibenclamide in three models of ischemic stroke. Stroke 2009; 40: 604-609
  • 49 Selvin E, Hirsch AT. Contemporary risk factor control and walking dysfunction in individuals with peripheral arterial disease: NHANES 1999-2004. Atherosclerosis 2008; 201: 425-433
  • 50 Venna VR, Li J, Hammond MD, Mancini NS, McCullough LD. Chronic metformin treatment improves post-stroke angiogenesis and recovery after experimental stroke. Eur J Neurosci 2014; 39: 2129-2138
  • 51 Meinert CL, Knatterud GL, Prout TE, Klimt CR. A study of the effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes. II. Mortality results. Diabetes 1970; 19 (Suppl) 789-830
  • 52 Buse JB, Rosenstock J, Sesti G, Schmidt WE, Montanya E, Brett JH, Zychma M, Blonde L. Group L-S . Liraglutide once a day versus exenatide twice a day for type 2 diabetes: a 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6). Lancet 2009; 374: 39-47
  • 53 Balfour JA, McTavish D. Acarbose: An update of its pharmacology and therapeutic use in diabetes mellitus. Drugs 1993; 46: 1025-1054
  • 54 Mooradian AD, Thurman JE. Drug therapy of postprandial hyperglycaemia. Drugs 1999; 57: 19-29
  • 55 He K, Shi JC, Mao XM. Safety and efficacy of acarbose in the treatment of diabetes in Chinese patients. Ther Clinl Risk Manag 2014; 10: 505-511
  • 56 Weng J, Soegondo S, Schnell O, Sheu WHH, Grzeszczak W, Watada H, Yamamoto N, Kalra S. Efficacy of acarbose in different geographical regions of the world: analysis of a real-life database. Diabetes/Metab Res Rev 2015; 31: 155-167
  • 57 Scheen AJ. Is there a role for alpha-glucosidase inhibitors in the prevention of type 2 diabetes mellitus?. Drugs 2003; 63: 933-951
  • 58 van de Laar FA, Lucassen PL, Akkermans RP, van de Lisdonk EH, Rutten GE, van Weel C. Alpha-glucosidase inhibitors for patients with type 2 diabetes: results from a Cochrane systematic review and meta-analysis. Diabetes Care 2005; 28: 154-163
  • 59 Derosa G, Maffioli P. Mini-Special Issue paper Management of diabetic patients with hypoglycemic agents α-Glucosidase inhibitors and their use in clinical practice. Archiv Med Sci 2012; 8: 899
  • 60 Kaku K. Efficacy of voglibose in type 2 diabetes. Expert Opin Pharmacother 2014; 15: 1181-1190
  • 61 Moritoh Y, Takeuchi K, Hazama M. Chronic administration of voglibose, an alpha-glucosidase inhibitor, increases active glucagon-like peptide-1 levels by increasing its secretion and decreasing dipeptidyl peptidase-4 activity in ob/ob mice. J Pharmacol Exp Ther 2009; 329: 669-676
  • 62 Laube H. Acarbose: An Update of Its Therapeutic Use in Diabetes Treatment. Clin Drug Investig 2002; 22: 141-156
  • 63 Philip E, Sundaram ML, Das R, Chauhan SK, Deshpande S, Ambhore S, Rathod R, Manjrekar P. Acarbose improves glycemic control as add-on or monotherapy in Indian type-2 diabetes: Findings from the GlucoVIP multinational observational study. Indian J Endocrinol Metab 2013; 17: S674
  • 64 Nathan DM, Buse JB, Davidson MB, Ferrannini E, Holman RR, Sherwin R, Zinman B. Management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: update regarding thiazolidinediones: a consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2008; 31: 173-175
  • 65 Haffner SM, Valdez R, Morales PA, Mitchell BD, Hazuda HP, Stern MP. Greater effect of glycemia on incidence of hypertension in women than in men. Diabetes Care 1992; 15: 1277-1284
  • 66 Satoh N, Shimatsu A, Yamada K, Aizawa-Abe M, Suganami T, Kuzuya H, Ogawa Y. An alpha-glucosidase inhibitor, voglibose, reduces oxidative stress markers and soluble intercellular adhesion molecule 1 in obese type 2 diabetic patients. Metabolism 2006; 55: 786-793
  • 67 Lee SM. The effect of chronic alpha-glycosidase inhibition on diabetic nephropathy in the db/db mouse. Diabetes 1982; 31: 249-254
  • 68 Chen JM, Chang CW, Lin YC, Horng JT, Sheu WH. Acarbose treatment and the risk of cardiovascular disease in type 2 diabetic patients: a nationwide seven-year follow-up study. J Diabetes Res 2014; 2014: 812628
  • 69 Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M. Group S-NTR . Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. JAMA 2003; 290: 486-494
  • 70 Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M. Group S-NTR . Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet 2002; 359: 2072-2077
  • 71 Bavenholm PN, Efendic S. Postprandial hyperglycaemia and vascular damage – the benefits of acarbose. Diabetes Vasc Disease Res 2006; 3: 72-79
  • 72 Hanefeld M, Chiasson JL, Koehler C, Henkel E, Schaper F, Temelkova-Kurktschiev T. Acarbose slows progression of intima-media thickness of the carotid arteries in subjects with impaired glucose tolerance. Stroke 2004; 35: 1073-1078
  • 73 Shimabukuro M, Higa N, Chinen I, Yamakawa K, Takasu N. Effects of a single administration of acarbose on postprandial glucose excursion and endothelial dysfunction in type 2 diabetic patients: a randomized crossover study. J Clin Endocrinol Metab 2006; 91: 837-842
  • 74 Wascher TC, Schmoelzer I, Wiegratz A, Stuehlinger M, Mueller-Wieland D, Kotzka J, Enderle M. Reduction of postchallenge hyperglycaemia prevents acute endothelial dysfunction in subjects with impaired glucose tolerance. Eur J Clin Investig 2005; 35: 551-557
  • 75 Azuma K, Toyofuku Y, Iesaki T, Otsuka A, Tanaka A, Mita T, Hirose T, Tanaka Y, Daida H, Kawamori R, Watada H. Acarbose, an alpha-glucosidase inhibitor, improves endothelial dysfunction in Goto-Kakizaki rats exhibiting repetitive blood glucose fluctuation. Biochem Biophys Res commun 2006; 345: 688-693
  • 76 Vallejo S, Angulo J, Peiro C, Cercas E, Sanchez-Ferrer A, Nevado J, Llergo JL, Rodriguez-Manas L, Sanchez-Ferrer CF. Treatment with acarbose may improve endothelial dysfunction in streptozotocin-induced diabetic rats. J Cardiovasc Pharmacol 2000; 36: 255-262
  • 77 Rosen P, Osmers A. Oxidative stress in young Zucker rats with impaired glucose tolerance is diminished by acarbose. Horm Metab Res 2006; 38: 575-586
  • 78 Aydin A, Orhan H, Sayal A, Ozata M, Sahin G, Isimer A. Oxidative stress and nitric oxide related parameters in type II diabetes mellitus: effects of glycemic control. Clin Biochem 2001; 34: 65-70
  • 79 Bischoff H. Pharmacology of alpha-glucosidase inhibition. Eur J Clin Investig 1994; 24 (Suppl. 03) 3-10
  • 80 Becker LB. New concepts in reactive oxygen species and cardiovascular reperfusion physiology. Cardiovasc Res 2004; 61: 461-470
  • 81 Paulson DJ. The diabetic heart is more sensitive to ischemic injury. Cardiovasc Res 1997; 34: 104-112
  • 82 Frantz S, Calvillo L, Tillmanns J, Elbing I, Dienesch C, Bischoff H, Ertl G, Bauersachs J. Repetitive postprandial hyperglycemia increases cardiac ischemia/reperfusion injury: prevention by the alpha-glucosidase inhibitor acarbose. FASEB J 2005; 19: 591-593
  • 83 Meneilly GS, Ryan EA, Radziuk J, Lau DC, Yale JF, Morais J, Chiasson JL, Rabasa-Lhoret R, Maheux P, Tessier D, Wolever T, Josse RG, Elahi D. Effect of acarbose on insulin sensitivity in elderly patients with diabetes. Diabetes care 2000; 23: 1162-1167
  • 84 Laube H, Linn T, Heyen P. The effect of acarbose on insulin sensitivity and proinsulin in overweight subjects with impaired glucose tolerance. Exp Clin Endocrinol Diabetes 1998; 106: 231-233
  • 85 Delgado H, Lehmann T, Bobbioni-Harsch E, Ybarra J, Golay A. Acarbose improves indirectly both insulin resistance and secretion in obese type 2 diabetic patients. Diabetes Metab 2002; 28: 195-200
  • 86 Hanefeld M, Haffner SM, Menschikowski M, Koehler C, Temelkova-Kurktschiev T, Wildbrett J, Fischer S. Different effects of acarbose and glibenclamide on proinsulin and insulin profiles in people with Type 2 diabetes. Diabetes Res Clin Pract 2002; 55: 221-227
  • 87 Rudofsky Jr G, Reismann P, Schiekofer S, Petrov D, von Eynatten M, Humpert PM, Isermann B, Muller-Hoff C, Thai TP, Lichtenstein S, Bartsch U, Hamann A, Nawroth P, Bierhaus A. Reduction of postprandial hyperglycemia in patients with type 2 diabetes reduces NF-kappaB activation in PBMCs. Horm Metab Res 2004; 36: 630-638
  • 88 Shinoda Y, Inoue I, Nakano T, Seo M, Sassa M, Goto S, Awata T, Komoda T, Katayama S. Acarbose improves fibrinolytic activity in patients with impaired glucose tolerance. Metabolism 2006; 55: 935-939
  • 89 Ceriello A, Taboga C, Tonutti L, Giacomello R, Stel L, Motz E, Pirisi M. Post-meal coagulation activation in diabetes mellitus: the effect of acarbose. Diabetologia 1996; 39: 469-473
  • 90 Kado S, Murakami T, Aoki A, Nagase T, Katsura Y, Noritake M, Matsuoka T, Nagata N. Effect of acarbose on postprandial lipid metabolism in type 2 diabetes mellitus. Diabetes Res Clin Pract 1998; 41: 49-55
  • 91 Scott R, Lintott CJ, Zimmet P, Campbell L, Bowen K, Welborn T. Will acarbose improve the metabolic abnormalities of insulin-resistant type 2 diabetes mellitus?. Diabetes Res Clin Pract 1999; 43: 179-185
  • 92 Kawamura T, Egusa G, Fujikawa R, Watanabe T, Oda K, Kataoka S, Takayama S, Kubo K, Yamamoto S, Noma K, Orita R, Yamakido M. Effect of acarbose on glycemic control and lipid metabolism in patients with non-insulin-dependent diabetes mellitus. Curr Ther Res 59: 97-106
  • 93 Mughal MA, Memon MY, Zardari MK, Tanwani RK, Ali M. Effect of acarbose on glycemic control, serum lipids and lipoproteins in type 2 diabetes. J Pakistan Med Assoc 2000; 50: 152-156
  • 94 Yamasaki Y, Katakami N, Hayaishi-Okano R, Matsuhisa M, Kajimoto Y, Kosugi K, Hatano M, Hori M. alpha-Glucosidase inhibitor reduces the progression of carotid intima-media thickness. Diabetes Res Clin Pract 2005; 67: 204-210
  • 95 Reaven GM, Lithell H, Landsberg L. Hypertension and associated metabolic abnormalities – the role of insulin resistance and the sympathoadrenal system. N Engl J Med 1996; 334: 374-381
  • 96 Rosenbaum P, Peres RB, Zanella MT, Ferreira SR. Improved glycemic control by acarbose therapy in hypertensive diabetic patients: effects on blood pressure and hormonal parameters. Brazilian J Med Biol Res 2002; 35: 877-884
  • 97 Rosenthal J, Mauersberger H. Effects on Blood Pressure of the α-Glucosidase Inhibitor Acarbose Compared with the Insulin Enhancer Glibenclamide in Patients with Hypertension and Type 2 Diabetes Mellitus. Clin Drug Investig 2002; 22: 695-701
  • 98 Shibao C, Gamboa A, Diedrich A, Dossett C, Choi L, Farley G, Biaggioni I. Acarbose an alpha-glucosidase inhibitor, attenuates postprandial hypotension in autonomic failure. Hypertension 2007; 50: 54-61
  • 99 Van de Laar FA, Lucassen PL, Akkermans RP, Van de Lisdonk EH, Rutten GE, Van Weel C. Alpha-glucosidase inhibitors for type 2 diabetes mellitus. In: The Cochrane Collaboration. (ed.). Cochrane Database of Systematic Reviews. Chichester, UK: John Wiley & Sons, Ltd.; 2005