Semin Respir Crit Care Med 2015; 36(04): 508-522
DOI: 10.1055/s-0035-1555611
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Identifying Molecular Targets for New Drug Development for Chronic Obstructive Pulmonary Disease: What Does the Future Hold?

Peter J. Barnes
1   National Heart and Lung Institute, Imperial College London, London, United Kingdom
› Author Affiliations
Further Information

Publication History

Publication Date:
03 August 2015 (online)

Abstract

There is an urgent need to develop more effective therapies for chronic obstructive pulmonary disease (COPD) that target the underlying inflammatory disease process. Current therapies with long-acting bronchodilators and inhaled corticosteroids fail to prevent either disease progression or mortality, as they do not suppress the underlying inflammation. With better understanding of the inflammatory and destructive process in the pathophysiology of COPD, several new therapeutic targets have been identified. Several mediator antagonists or inhibitors tested in COPD have so far been disappointing. Broad-spectrum anti-inflammatory drugs may be more effective, and include inhibitors of the proinflammatory enzymes phosphodiesterase-4, p38 mitogen-activated protein kinase, Janus-activated kinases, NF-κB kinase, and PI3kinase-γ and -δ, but side effects after oral administration are a major limitation; therefore, in future inhaled delivery may be necessary. A new promising approach is reversal of corticosteroid resistance through increasing histone deacetylase-2 activity. This might be achieved by existing treatments such as theophylline, nortriptyline, and macrolides, or more selectively by PI3kinase-δ inhibitors. Other treatments in development target oxidative stress, the failure to resolve inflammation, aberrant repair mechanisms, and accelerated lung aging.

 
  • References

  • 1 Lozano R, Naghavi M, Foreman K , et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380 (9859) 2095-2128
  • 2 Singh D. New combination bronchodilators for chronic obstructive pulmonary disease: current evidence and future perspectives. Br J Clin Pharmacol 2015; 79 (5) 695-708
  • 3 Barnes PJ. New anti-inflammatory targets for chronic obstructive pulmonary disease. Nat Rev Drug Discov 2013; 12 (7) 543-559
  • 4 Barnes PJ. Cellular and molecular mechanisms of chronic obstructive pulmonary disease. Clin Chest Med 2014; 35 (1) 71-86
  • 5 Fricker M, Deane A, Hansbro PM. Animal models of chronic obstructive pulmonary disease. Expert Opin Drug Discov 2014; 9 (6) 629-645
  • 6 Calverley PM, Anderson JA, Celli B , et al; TORCH investigators. Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease. N Engl J Med 2007; 356 (8) 775-789
  • 7 Vestbo J, Edwards LD, Scanlon PD , et al; ECLIPSE Investigators. Changes in forced expiratory volume in 1 second over time in COPD. N Engl J Med 2011; 365 (13) 1184-1192
  • 8 Barnes PJ, Celli BR. Systemic manifestations and comorbidities of COPD. Eur Respir J 2009; 33 (5) 1165-1185
  • 9 Barnes PJ, Chowdhury B, Kharitonov SA , et al. Pulmonary biomarkers in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2006; 174 (1) 6-14
  • 10 Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol 2008; 8 (3) 183-192
  • 11 Hogg JC, Timens W. The pathology of chronic obstructive pulmonary disease. Annu Rev Pathol 2009; 4: 435-459
  • 12 Brusselle GG, Joos GF, Bracke KR. New insights into the immunology of chronic obstructive pulmonary disease. Lancet 2011; 378 (9795) 1015-1026
  • 13 McDonough JE, Yuan R, Suzuki M , et al. Small-airway obstruction and emphysema in chronic obstructive pulmonary disease. N Engl J Med 2011; 365 (17) 1567-1575
  • 14 Van Pottelberge GR, Bracke KR, Joos GF, Brusselle GG. The role of dendritic cells in the pathogenesis of COPD: liaison officers in the front line. COPD 2009; 6 (4) 284-290
  • 15 Cosio MG, Saetta M, Agusti A. Immunologic aspects of chronic obstructive pulmonary disease. N Engl J Med 2009; 360 (23) 2445-2454
  • 16 Alcorn JF, Crowe CR, Kolls JK. TH17 cells in asthma and COPD. Annu Rev Physiol 2010; 72: 495-516
  • 17 Ito K, Ito M, Elliott WM , et al. Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N Engl J Med 2005; 352 (19) 1967-1976
  • 18 Taylor AE, Finney-Hayward TK, Quint JK , et al. Defective macrophage phagocytosis of bacteria in COPD. Eur Respir J 2010; 35 (5) 1039-1047
  • 19 Donnelly LE, Barnes PJ. Defective phagocytosis in airways disease. Chest 2012; 141 (4) 1055-1062
  • 20 Karayama M, Inui N, Suda T, Nakamura Y, Nakamura H, Chida K. Antiendothelial Cell Antibodies in Patients With COPD. Chest 2010; 138 (6) 1303-1308
  • 21 Kirkham PA, Caramori G, Casolari P , et al. Oxidative stress-induced antibodies to carbonyl-modified protein correlate with severity of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2011; 184 (7) 796-802
  • 22 Papi A, Luppi F, Franco F, Fabbri LM. Pathophysiology of exacerbations of chronic obstructive pulmonary disease. Proc Am Thorac Soc 2006; 3 (3) 245-251
  • 23 Ito K, Barnes PJ. COPD as a disease of accelerated lung aging. Chest 2009; 135 (1) 173-180
  • 24 MacNee W, Rabinovich RA, Choudhury G. Ageing and the border between health and disease. Eur Respir J 2014; 44 (5) 1332-1352
  • 25 Barnes PJ. Mediators of chronic obstructive pulmonary disease. Pharmacol Rev 2004; 56 (4) 515-548
  • 26 Barnes PJ. The cytokine network in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 2009; 41 (6) 631-638
  • 27 Hicks A, Monkarsh SP, Hoffman AF, Goodnow Jr R. Leukotriene B4 receptor antagonists as therapeutics for inflammatory disease: preclinical and clinical developments. Expert Opin Investig Drugs 2007; 16 (12) 1909-1920
  • 28 Grönke L, Beeh KM, Cameron R , et al. Effect of the oral leukotriene B4 receptor antagonist LTB019 on inflammatory sputum markers in patients with chronic obstructive pulmonary disease. Pulm Pharmacol Ther 2008; 21 (2) 409-417
  • 29 Bernstein JA, Liu N, Knorr BA , et al. MK-0633, a potent 5-lipoxygenase inhibitor, in chronic obstructive pulmonary disease. Respir Med 2011; 105 (3) 392-401
  • 30 Woodruff PG, Albert RK, Bailey WC , et al; Copd Clinical Research Network. Randomized trial of zileuton for treatment of COPD exacerbations requiring hospitalization. COPD 2011; 8 (1) 21-29
  • 31 Rennard SI, Fogarty C, Kelsen S , et al; COPD Investigators. The safety and efficacy of infliximab in moderate to severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2007; 175 (9) 926-934
  • 32 Paul-Pletzer K. Tocilizumab: blockade of interleukin-6 signaling pathway as a therapeutic strategy for inflammatory disorders. Drugs Today (Barc) 2006; 42 (9) 559-576
  • 33 McAleer JP, Kolls JK. Directing traffic: IL-17 and IL-22 coordinate pulmonary immune defense. Immunol Rev 2014; 260 (1) 129-144
  • 34 Strowig T, Henao-Mejia J, Elinav E, Flavell R. Inflammasomes in health and disease. Nature 2012; 481 (7381) 278-286
  • 35 Zhang H. Anti-IL-1β therapies. Recent Pat DNA Gene Seq 2011; 5 (2) 126-135
  • 36 Rovina N, Dima E, Gerassimou C, Kollintza A, Gratziou C, Roussos C. Interleukin-18 in induced sputum: association with lung function in chronic obstructive pulmonary disease. Respir Med 2009; 103 (7) 1056-1062
  • 37 Eltom S, Belvisi MG, Stevenson CS , et al. Role of the inflammasome-caspase1/11-IL-1/18 axis in cigarette smoke driven airway inflammation: an insight into the pathogenesis of COPD. PLoS ONE 2014; 9 (11) e112829
  • 38 Boxer MB, Quinn AM, Shen M , et al. A highly potent and selective caspase 1 inhibitor that utilises a key 3-cyanoproprionic acid moiety. Chem Med Chem 2010; 5 (5) 730-738
  • 39 Lucattelli M, Cicko S, Müller T , et al. P2 × 7 receptor signaling in the pathogenesis of smoke-induced lung inflammation and emphysema. Am J Respir Cell Mol Biol 2011; 44 (3) 423-429
  • 40 Di Stefano A, Caramori G, Barczyk A , et al. Innate immunity but not NLRP3 inflammasome activation correlates with severity of stable COPD. Thorax 2014; 69 (6) 516-524
  • 41 Donnelly LE, Barnes PJ. Chemokine receptors as therapeutic targets in chronic obstructive pulmonary disease. Trends Pharmacol Sci 2006; 27 (10) 546-553
  • 42 Donnelly LE, Barnes PJ. Chemokine receptor CXCR2 antagonism to prevent airway inflammation. Drugs Future 2011; 36 (6) 465-472
  • 43 Leaker BR, Barnes PJ, O'Connor B. Inhibition of LPS-induced airway neutrophilic inflammation in healthy volunteers with an oral CXCR2 antagonist. Respir Res 2013; 14: 137
  • 44 Holz O, Khalilieh S, Ludwig-Sengpiel A , et al. SCH527123, a novel CXCR2 antagonist, inhibits ozone-induced neutrophilia in healthy subjects. Eur Respir J 2010; 35 (3) 564-570
  • 45 Lazaar AL, Sweeney LE, MacDonald AJ, Alexis NE, Chen C, Tal-Singer R. SB-656933, a novel CXCR2 selective antagonist, inhibits ex vivo neutrophil activation and ozone-induced airway inflammation in humans. Br J Clin Pharmacol 2011; 72 (2) 282-293
  • 46 Magnussen H, Watz H, Sauer M , et al. Safety and efficacy of SCH527123, a novel CXCR2 antagonist, in patients with COPD. Eur Respir J 2010; 36 (Suppl): 38S
  • 47 Gaggar A, Jackson PL, Noerager BD , et al. A novel proteolytic cascade generates an extracellular matrix-derived chemoattractant in chronic neutrophilic inflammation. J Immunol 2008; 180 (8) 5662-5669
  • 48 Kerstjens HA, Bjermer L, Eriksson L, Dahlström K, Vestbo J. Tolerability and efficacy of inhaled AZD4818, a CCR1 antagonist, in moderate to severe COPD patients. Respir Med 2010; 104 (9) 1297-1303
  • 49 Costa C, Rufino R, Traves SL, Lapa E Silva JR, Barnes PJ, Donnelly LE. CXCR3 and CCR5 chemokines in induced sputum from patients with COPD. Chest 2008; 133 (1) 26-33
  • 50 Groutas WC, Dou D, Alliston KR. Neutrophil elastase inhibitors. Expert Opin Ther Pat 2011; 21 (3) 339-354
  • 51 Stevens T, Ekholm K, Gränse M , et al. AZD9668: pharmacological characterization of a novel oral inhibitor of neutrophil elastase. J Pharmacol Exp Ther 2011; 339 (1) 313-320
  • 52 Kuna P, Jenkins M, O'Brien CD, Fahy WA. AZD9668, a neutrophil elastase inhibitor, plus ongoing budesonide/formoterol in patients with COPD. Respir Med 2012; 106 (4) 531-539
  • 53 Vogelmeier C, Aquino TO, O'Brien CD, Perrett J, Gunawardena KAA. A randomised, placebo-controlled, dose-finding study of AZD9668, an oral inhibitor of neutrophil elastase, in patients with chronic obstructive pulmonary disease treated with tiotropium. COPD 2012; 9 (2) 111-120
  • 54 Churg A, Wang R, Wang X, Onnervik PO, Thim K, Wright JL. Effect of an MMP-9/MMP-12 inhibitor on smoke-induced emphysema and airway remodelling in guinea pigs. Thorax 2007; 62 (8) 706-713
  • 55 Li W, Li J, Wu Y , et al. A selective matrix metalloprotease 12 inhibitor for potential treatment of chronic obstructive pulmonary disease (COPD): discovery of (S)-2-(8-(methoxycarbonylamino)dibenzo[b,d]furan-3-sulfonamido)-3-methylbutanoic acid (MMP408). J Med Chem 2009; 52 (7) 1799-1802
  • 56 Kirkham PA, Barnes PJ. Oxidative stress in COPD. Chest 2013; 144 (1) 266-273
  • 57 Caramori G, Adcock IM, Casolari P , et al. Unbalanced oxidant-induced DNA damage and repair in COPD: a link towards lung cancer. Thorax 2011; 66 (6) 521-527
  • 58 Kirkham PA, Caramori G, Casolari P , et al. Oxidative stress-induced antibodies to carbonyl-modified protein correlate with severity of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2011; 184 (7) 796-802
  • 59 Nakamaru Y, Vuppusetty C, Wada H , et al. A protein deacetylase SIRT1 is a negative regulator of metalloproteinase-9. FASEB J 2009; 23 (9) 2810-2819
  • 60 Chang LY, Subramaniam M, Yoder BA , et al. A catalytic antioxidant attenuates alveolar structural remodeling in bronchopulmonary dysplasia. Am J Respir Crit Care Med 2003; 167 (1) 57-64
  • 61 Cheng YF, Jiang J, Hu P , et al. Pharmacokinetics of 8-hour intravenous infusion of NXY-059: a phase I, randomized, double-blind (within dose panels), placebo-controlled study in healthy Chinese volunteers. Clin Ther 2008; 30 (12) 2342-2353
  • 62 Cifuentes-Pagano E, Csanyi G, Pagano PJ. NADPH oxidase inhibitors: a decade of discovery from Nox2ds to HTS. Cell Mol Life Sci 2012; 69 (14) 2315-2325
  • 63 Churg A, Marshall CV, Sin DD , et al. Late intervention with a myeloperoxidase inhibitor stops progression of experimental chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2012; 185 (1) 34-43
  • 64 Malhotra D, Thimmulappa R, Navas-Acien A , et al. Expression of concern: Decline in NRF2 regulated antioxidants in chronic obstructive pulmonary disease lungs due to loss of its positive regulator DJ-1. Am J Respir Crit Care Med 2008; 178 (6) 592-604
  • 65 Mercado N, Thimmulappa R, Thomas CM , et al. Decreased histone deacetylase 2 impairs Nrf2 activation by oxidative stress. Biochem Biophys Res Commun 2011; 406 (2) 292-298
  • 66 Sussan TE, Rangasamy T, Blake DJ , et al. Targeting Nrf2 with the triterpenoid CDDO-imidazolide attenuates cigarette smoke-induced emphysema and cardiac dysfunction in mice. Proc Natl Acad Sci U S A 2009; 106 (1) 250-255
  • 67 Kappos L, Gold R, Miller DH , et al; BG-12 Phase IIb Study Investigators. Efficacy and safety of oral fumarate in patients with relapsing-remitting multiple sclerosis: a multicentre, randomised, double-blind, placebo-controlled phase IIb study. Lancet 2008; 372 (9648) 1463-1472
  • 68 Jiang ZY, Lu MC, Xu LL , et al. Discovery of potent Keap1-Nrf2 protein-protein interaction inhibitor based on molecular binding determinants analysis. J Med Chem 2014; 57 (6) 2736-2745 [corrected in J Med Chem 2014;57(10):4406]
  • 69 Mercado N, Kizawa Y, Ueda K , et al. Activation of transcription factor Nrf2 signalling by the sphingosine kinase inhibitor SKI-II is mediated by the formation of Keap1 dimers. PLoS ONE 2014; 9 (2) e88168
  • 70 Barnes PJ, Adcock IM. Glucocorticoid resistance in inflammatory diseases. Lancet 2009; 373 (9678) 1905-1917
  • 71 Diamant Z, Spina D. PDE4-inhibitors: a novel, targeted therapy for obstructive airways disease. Pulm Pharmacol Ther 2011; 24 (4) 353-360
  • 72 Hatzelmann A, Morcillo EJ, Lungarella G , et al. The preclinical pharmacology of roflumilast—a selective, oral phosphodiesterase 4 inhibitor in development for chronic obstructive pulmonary disease. Pulm Pharmacol Ther 2010; 23 (4) 235-256
  • 73 Martorana PA, Beume R, Lucattelli M, Wollin L, Lungarella G. Roflumilast fully prevents emphysema in mice chronically exposed to cigarette smoke. Am J Respir Crit Care Med 2005; 172 (7) 848-853
  • 74 Grootendorst DC, Gauw SA, Verhoosel RM , et al. Reduction in sputum neutrophil and eosinophil numbers by the PDE4 inhibitor roflumilast in patients with COPD. Thorax 2007; 62 (12) 1081-1087
  • 75 Calverley PM, Rabe KF, Goehring UM, Kristiansen S, Fabbri LM, Martinez FJ ; M2-124 and M2-125 study groups. Roflumilast in symptomatic chronic obstructive pulmonary disease: two randomised clinical trials. Lancet 2009; 374 (9691) 685-694
  • 76 Vestbo J, Tan L, Atkinson G, Ward J ; UK-500,001 Global Study Team. A controlled trial of 6-weeks' treatment with a novel inhaled phosphodiesterase type-4 inhibitor in COPD. Eur Respir J 2009; 33 (5) 1039-1044
  • 77 Watz H, Mistry SJ, Lazaar AL ; IPC101939 investigators. Safety and tolerability of the inhaled phosphodiesterase 4 inhibitor GSK256066 in moderate COPD. Pulm Pharmacol Ther 2013; 26 (5) 588-595
  • 78 Goto T, Shiina A, Murata T , et al. Identification of the 5,5-dioxo-7,8-dihydro-6H-thiopyrano[3,2-d]pyrimidine derivatives as highly selective PDE4B inhibitors. Bioorg Med Chem Lett 2014; 24 (3) 893-899
  • 79 Smith SJ, Cieslinski LB, Newton R , et al. Discovery of BRL 50481 [3-(N,N-dimethylsulfonamido)-4-methyl-nitrobenzene], a selective inhibitor of phosphodiesterase 7: in vitro studies in human monocytes, lung macrophages, and CD8+ T-lymphocytes. Mol Pharmacol 2004; 66 (6) 1679-1689
  • 80 Fortin M, D'Anjou H, Higgins ME , et al. A multi-target antisense approach against PDE4 and PDE7 reduces smoke-induced lung inflammation in mice. Respir Res 2009; 10: 39
  • 81 Franciosi LG, Diamant Z, Banner KH , et al. Efficacy and safety of RPL554, a dual PDE3 and PDE4 inhibitor, in healthy volunteers and in patients with asthma or chronic obstructive pulmonary disease: findings from four clinical trials. Lancet Respir Med 2013; 1 (9) 714-727
  • 82 Birrell MA, Wong S, Hardaker EL , et al. IkappaB kinase-2-independent and -dependent inflammation in airway disease models: relevance of IKK-2 inhibition to the clinic. Mol Pharmacol 2006; 69 (6) 1791-1800
  • 83 Chung KF. p38 mitogen-activated protein kinase pathways in asthma and COPD. Chest 2011; 139 (6) 1470-1479
  • 84 Renda T, Baraldo S, Pelaia G , et al. Increased activation of p38 MAPK in COPD. Eur Respir J 2008; 31 (1) 62-69
  • 85 Smith SJ, Fenwick PS, Nicholson AG , et al. Inhibitory effect of p38 mitogen-activated protein kinase inhibitors on cytokine release from human macrophages. Br J Pharmacol 2006; 149 (4) 393-404
  • 86 Medicherla S, Fitzgerald M, Spicer D , et al. p38 alpha-selective mitogen-activated protein kinase inhibitor SD-282 reduces inflammation in a subchronic model of tobacco smoke-induced airway inflammation. J Pharmacol Exp Ther 2008; 324 (3) 921-929
  • 87 Hammaker D, Firestein GS. “Go upstream, young man”: lessons learned from the p38 saga. Ann Rheum Dis 2010; 69 (Suppl. 01) i77-i82
  • 88 Lomas DA, Lipson DA, Miller BE , et al; Losmapimod Study Investigators. An Oral Inhibitor of p38 MAP Kinase Reduces Plasma Fibrinogen in Patients With Chronic Obstructive Pulmonary Disease. J Clin Pharmacol 2012; 52 (3) 416-424
  • 89 MacNee W, Allan RJ, Jones I, De Salvo MC, Tan LF. Efficacy and safety of the oral p38 inhibitor PH-797804 in chronic obstructive pulmonary disease: a randomised clinical trial. Thorax 2013; 68 (8) 738-745
  • 90 Duan W, Chan JH, McKay K , et al. Inhaled p38alpha mitogen-activated protein kinase antisense oligonucleotide attenuates asthma in mice. Am J Respir Crit Care Med 2005; 171 (6) 571-578
  • 91 Millan DS. What is the potential for inhaled p38 inhibitors in the treatment of chronic obstructive pulmonary disease?. Future Med Chem 2011; 3 (13) 1635-1645
  • 92 Marwick JA, Chung KF, Adcock IM. Phosphatidylinositol 3-kinase isoforms as targets in respiratory disease. Ther Adv Respir Dis 2010; 4 (1) 19-34
  • 93 To Y, Ito K, Kizawa Y , et al. Targeting phosphoinositide-3-kinase- delta with theophylline reverses corticosteroid insensitivity in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2010; 182 (7) 897-904
  • 94 Gustafson AM, Soldi R, Anderlind C , et al. Airway PI3K pathway activation is an early and reversible event in lung cancer development. Sci Transl Med 2010; 2 (26) 26ra25
  • 95 Medina-Tato DA, Ward SG, Watson ML. Phosphoinositide 3-kinase signalling in lung disease: leucocytes and beyond. Immunology 2007; 121 (4) 448-461
  • 96 Ameriks MK, Venable JD. Small molecule inhibitors of phosphoinositide 3-kinase (PI3K) delta and gamma. Curr Top Med Chem 2009; 9 (8) 738-753
  • 97 Doukas J, Eide L, Stebbins K , et al. Aerosolized phosphoinositide 3-kinase gamma/delta inhibitor TG100-115 [3-[2,4-diamino-6-(3-hydroxyphenyl)pteridin-7-yl]phenol] as a therapeutic candidate for asthma and chronic obstructive pulmonary disease. J Pharmacol Exp Ther 2009; 328 (3) 758-765
  • 98 Marwick JA, Caramori G, Stevenson CS , et al. Inhibition of PI3Kdelta restores glucocorticoid function in smoking-induced airway inflammation in mice. Am J Respir Crit Care Med 2009; 179 (7) 542-548
  • 99 Mercado N, To Y, Ito K, Barnes PJ. Nortriptyline reverses corticosteroid insensitivity by inhibition of phosphoinositide-3-kinase-δ. J Pharmacol Exp Ther 2011; 337 (2) 465-470
  • 100 Di Stefano A, Caramori G, Capelli A , et al. STAT4 activation in smokers and patients with chronic obstructive pulmonary disease. Eur Respir J 2004; 24 (1) 78-85
  • 101 Menet CJ, Rompaey LV, Geney R. Advances in the discovery of selective JAK inhibitors. Prog Med Chem 2013; 52: 153-223
  • 102 Belvisi MG, Hele DJ, Birrell MA. Peroxisome proliferator-activated receptor gamma agonists as therapy for chronic airway inflammation. Eur J Pharmacol 2006; 533 (1-3) 101-109
  • 103 Milam JE, Keshamouni VG, Phan SH , et al. PPAR-gamma agonists inhibit profibrotic phenotypes in human lung fibroblasts and bleomycin-induced pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2008; 294 (5) L891-L901
  • 104 Barnes PJ. Histone deacetylase-2 and airway disease. Ther Adv Respir Dis 2009; 3 (5) 235-243
  • 105 Ito K, Yamamura S, Essilfie-Quaye S , et al. Histone deacetylase 2-mediated deacetylation of the glucocorticoid receptor enables NF-kappaB suppression. J Exp Med 2006; 203 (1) 7-13
  • 106 Cosio BG, Tsaprouni L, Ito K, Jazrawi E, Adcock IM, Barnes PJ. Theophylline restores histone deacetylase activity and steroid responses in COPD macrophages. J Exp Med 2004; 200 (5) 689-695
  • 107 Ford PA, Durham AL, Russell REK, Gordon F, Adcock IM, Barnes PJ. Treatment effects of low-dose theophylline combined with an inhaled corticosteroid in COPD. Chest 2010; 137 (6) 1338-1344
  • 108 Barnes PJ. Theophylline. Am J Respir Crit Care Med 2013; 188 (8) 901-906
  • 109 Meja KK, Rajendrasozhan S, Adenuga D , et al. Curcumin restores corticosteroid function in monocytes exposed to oxidants by maintaining HDAC2. Am J Respir Cell Mol Biol 2008; 39 (3) 312-323
  • 110 Kobayashi Y, Wada H, Rossios C , et al. A novel macrolide/fluoroketolide, solithromycin (CEM-101), reverses corticosteroid insensitivity via phosphoinositide 3-kinase pathway inhibition. Br J Pharmacol 2013; 169 (5) 1024-1034
  • 111 Sethi S, Jones PW, Theron MS , et al; PULSE Study group. Pulsed moxifloxacin for the prevention of exacerbations of chronic obstructive pulmonary disease: a randomized controlled trial. Respir Res 2010; 11: 10
  • 112 Serisier DJ. Inhaled antibiotics for lower respiratory tract infections: focus on ciprofloxacin. Drugs Today (Barc) 2012; 48 (5) 339-351
  • 113 Seemungal TA, Wilkinson TM, Hurst JR, Perera WR, Sapsford RJ, Wedzicha JA. Long-term erythromycin therapy is associated with decreased chronic obstructive pulmonary disease exacerbations. Am J Respir Crit Care Med 2008; 178 (11) 1139-1147
  • 114 Albert RK, Connett J, Bailey WC , et al; COPD Clinical Research Network. Azithromycin for prevention of exacerbations of COPD. N Engl J Med 2011; 365 (8) 689-698
  • 115 Kobayashi Y, Wada H, Rossios C , et al. A novel macrolide solithromycin exerts superior anti-inflammatory effect via NF-κB inhibition. J Pharmacol Exp Ther 2013; 345 (1) 76-84
  • 116 Kobayashi Y, Wada H, Rossios C , et al. A novel macrolide/fluoroketolide, solithromycin (CEM-101), reverses corticosteroid insensitivity via phosphoinositide 3-kinase pathway inhibition. Br J Pharmacol 2013; 169 (5) 1024-1034
  • 117 Sugawara A, Sueki A, Hirose T , et al. Novel 12-membered non-antibiotic macrolides from erythromycin A; EM900 series as novel leads for anti-inflammatory and/or immunomodulatory agents. Bioorg Med Chem Lett 2011; 21 (11) 3373-3376
  • 118 Hodge S, Hodge G, Jersmann H , et al. Azithromycin improves macrophage phagocytic function and expression of mannose receptor in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2008; 178 (2) 139-148
  • 119 Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature 2014; 510 (7503) 92-101
  • 120 Bozinovski S, Anthony D, Anderson GP, Irving LB, Levy BD, Vlahos R. Treating neutrophilic inflammation in COPD by targeting ALX/FPR2 resolution pathways. Pharmacol Ther 2013; 140 (3) 280-289
  • 121 Hsiao HM, Sapinoro RE, Thatcher TH , et al. A novel anti-inflammatory and pro-resolving role for resolvin D1 in acute cigarette smoke-induced lung inflammation. PLoS ONE 2013; 8 (3) e58258
  • 122 Serhan CN, Dalli J, Karamnov S , et al. Macrophage proresolving mediator maresin 1 stimulates tissue regeneration and controls pain. FASEB J 2012; 26 (4) 1755-1765
  • 123 Hind M, Gilthorpe A, Stinchcombe S, Maden M. Retinoid induction of alveolar regeneration: from mice to man?. Thorax 2009; 64 (5) 451-457
  • 124 Roth MD, Connett JE, D'Armiento JM , et al; FORTE Study Investigators. Feasibility of retinoids for the treatment of emphysema study. Chest 2006; 130 (5) 1334-1345
  • 125 Stolk J, Stockley RA, Stoel BC , et al. Randomised controlled trial for emphysema with a selective agonist of the γ-type retinoic acid receptor. Eur Respir J 2012; 40 (2) 306-312
  • 126 Hegab AE, Kubo H, Yamaya M , et al. Intranasal HGF administration ameliorates the physiologic and morphologic changes in lung emphysema. Mol Ther 2008; 16 (8) 1417-1426
  • 127 Kanazawa H, Tochino Y, Asai K, Hirata K. Simultaneous assessment of hepatocyte growth factor and vascular endothelial growth factor in epithelial lining fluid from patients with COPD. Chest 2014; 146 (5) 1159-1651
  • 128 Barnes PJ. Hepatocyte growth factor deficiency in COPD: a mechanism of emphysema and small airway fibrosis?. Chest 2014; 146 (5) 1135-1136
  • 129 Huh JW, Kim SY, Lee JH , et al. Bone marrow cells repair cigarette smoke-induced emphysema in rats. Am J Physiol Lung Cell Mol Physiol 2011; 301 (3) L255-L266
  • 130 Weiss DJ, Casaburi R, Flannery R, LeRoux-Williams M, Tashkin DP. A placebo-controlled, randomized trial of mesenchymal stem cells in COPD. Chest 2013; 143 (6) 1590-1598
  • 131 Hind M, Maden M. Is a regenerative approach viable for the treatment of COPD?. Br J Pharmacol 2011; 163 (1) 106-115
  • 132 Ott HC, Clippinger B, Conrad C , et al. Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med 2010; 16 (8) 927-933
  • 133 Mercado N, Ito K, Barnes PJ. Accelerated ageing in chronic obstructive pulmonary disease: new concepts. Thorax 2015; (in press)
  • 134 Donnelly LE, Newton R, Kennedy GE , et al. Anti-inflammatory effects of resveratrol in lung epithelial cells: molecular mechanisms. Am J Physiol Lung Cell Mol Physiol 2004; 287 (4) L774-L783
  • 135 Culpitt SV, Rogers DF, Fenwick PS , et al. Inhibition by red wine extract, resveratrol, of cytokine release by alveolar macrophages in COPD. Thorax 2003; 58 (11) 942-946
  • 136 Hubbard BP, Sinclair DA. Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends Pharmacol Sci 2014; 35 (3) 146-154
  • 137 Johnson SC, Rabinovitch PS, Kaeberlein M. mTOR is a key modulator of ageing and age-related disease. Nature 2013; 493 (7432) 338-345
  • 138 Sime PJ. The antifibrogenic potential of PPARgamma ligands in pulmonary fibrosis. J Investig Med 2008; 56 (2) 534-538
  • 139 Fonseca C, Abraham D, Renzoni EA. Endothelin in pulmonary fibrosis. Am J Respir Cell Mol Biol 2011; 44 (1) 1-10