Aktuelle Neurologie 2015; 42(08): 445-455
DOI: 10.1055/s-0035-1552692
Neues in der Neurologie
© Georg Thieme Verlag KG Stuttgart · New York

Neues bei HIV und Neuro-Aids

Update HIV-Infection and Neuro-Aids
G. Arendt
1   Klinik für Neurologie, Universitätsklinikum Düsseldorf
,
O. Grauer
2   Klinik für Neurologie, Universitätsklinikum Münster
,
K. Hahn
3   Klinik für Neurologie, Charité Berlin
,
M. Maschke
4   Klinik für Neurologie, Klinikum Trier
,
M. Obermann
5   Klinik für Neurologie, Universitätsklinikum Essen
,
I. W. Husstedt
2   Klinik für Neurologie, Universitätsklinikum Münster
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
07. Oktober 2015 (online)

Zusammenfassung

Trotz sehr effektiver Behandlungsoptionen für die systemische HIV-Infektion sind Neuro-Aids und die HIV-assoziierte neurokognitive Störung ein klinisches und alltagsrelevantes Problem. Man unterscheidet 3 Stufen, das HIV-assoziierte, neuropsychologische Defizit (ANPD), das milde, HIV-assoziierte neurokognitive Defizit (MNCD) und die HIV-assoziierte Demenz (HAD). Die Behandlungsmöglichkeiten HIV-assoziierter neuro-kognitiver Störungen umfasst die antiretrovirale Therapie (cART), die den CPE-Score zur Penetration der Medikamente ins ZNS berücksichtigen sollte. Es ist sinnvoll, bei Auftreten multiresistenter Virusvarianten im Blut auch im Liquor entsprechende Untersuchungen durchzuführen. Im peripheren Nervensystems treten neben der klassischen, distal-symmetrischen, HIV-assoziierten Polyneuropathie immunogen vermittelte Neuropathien oder Myopathien auf (CIDP, AIDP). Durch die antiretrovirale Therapie (cART) verursachte Polyneuropathien sind differenzialdiagnostisch zu berücksichtigen. Erworbene mitochondrial toxische Myopathien treten häufiger auf, da nun eine cART durchaus über 10 – 20 Jahre durchgeführt wird. Bei Patienten mit schweren depressiven Episoden zeigte sich eine 6-mal höhere Wahrscheinlichkeit, die Einnahme der cART mindestens einmal zu vergessen. Depressive Episoden sind oft ein Grund für mangelhafte Adhärenz, korrelieren mit einer höheren Viruslast und sind dringend zu behandeln. In den letzten Jahren kam es infolge der verbesserten cART zu einem Rückgang der opportunistischen Infektionen (OI) des ZNS.

Die häufigsten OI stellen die progressive multifokale Leukoenzephalopathie (PML), die Toxoplasma-Enzephalitis und die Kryptokokken-Meningitis dar. Bei rasch progredientem Verlauf einer OI muss an ein Immunrekonstitutionssyndrom (IRIS) gedacht werden. Es gibt momentan keine sichere Methode, z. B. die Verschlechterung einer PML durch den natürlichen Krankheitsverlauf von der Verschlechterung durch ein IRIS zu unterscheiden. Infolge der deutlich zunehmenden Lebenserwartung treten Komorbiditäten mehr in den Vordergrund. Zu den viralen Biomarkern für die Krankheitsaktivität im ZNS zählen Neopterin als Marker der Makrophagenaktivierung, das Neurofilament-Leichtprotein und das Gesamt-Tau-Protein.

Abstract

Despite very effective treatment options for HIV-infection, Neuro-Aids and neuro-cognitive disorders remain a problem. There are three stages: HIV-associated, neurocognitive impairment (ANI), mild, HIV-associated neurocognitive deficit (MNCD) and HIV-associated dementia (HAD). Antiretroviral combination therapy (cART) should take into account the CNS penetration effectiveness (CPE)-score of the antiretroviral drugs. CSF-viral load and genetic virus variants should be analysed. There are also virus-associated complications of the peripheral nervous system. Besides the classic distal symmetrical, HIV-associated polyneuropathy, immunogenic neuropathies (CIDP, AIDP) and myopathies also occur. Polyneuropathies caused by cART represent a differential diagnosis. Acquired mitochondrial toxic myopathies occur more frequently, because nowadays cART is administered over 10 – 20 years. Depression, a frequent psychiatric complication, is associated with poor adherence and higher viral loads, and must be treated promptly. In recent years, the prevalence of opportunistic CNS-infections has declined due to the modern antiretroviral therapy. Progressive multifocal leucoencephalopathy (PML), Toxoplasma gondii encephalitis and Cryptococcus neoformans meningitis are the most common OIs. In case of rapidly progressive disease, an immune reconstitution syndrome (IRIS) should be considered. There is currently no reliable method to differentiate PML-deterioration from IRIS-PML. Because of a significantly increased life expectancy, comorbidities become more relevant. Neopterine as a marker of macrophage activation, neurofilament light protein and total tau protein represent biomarkers for disease activity in the CNS.

 
  • Literatur

  • 1 McArthur JC. Dementia, neuropathy, and HIV. An interview with Justin C. McArthur, MB, BS, MPH. Interview by Mark Mascolini. J Int Assoc Physicians AIDS Care 1996; 2: 27-28, 31–24
  • 2 Tozzi V, Balestra P, Serraino D et al. Neurocognitive impairment and survival in a cohort of HIV-infected patients treated with HAART. AIDS Res Hum Retroviruses 2005; 21: 706-713
  • 3 Valcour VG, Sithinamsuwan P, Nidhinandana S et al. Neuropsychological abnormalities in patients with dementia in CRF 01_AE HIV-1 infection. Neurology 2007; 68: 525-527
  • 4 Antinori A, Arendt G, Becker JT et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology 2007; 69: 1789-1799
  • 5 Arendt G, Orhan E, Arbter P et al. Prospective Multicentric Evaluation of a Screening Questionaire as an Entry Tool for Neuropsychological Short Testing in HIV/AIDS-Patients. Melbourne: World AIDS-Congress; 2014
  • 6 The Mind Exchange Workung G. Assessment, Diagnosis, and Treatment of HIV-Associated Neurocognitive Disorder: A Consensus Report of the Mind Exchange Program. Clin Infect Dis 2013; 56: 1004-1017
  • 7 Clifford DB, Evans S, Yang Y et al. Long-term impact of efavirenz on neuropsychological performance and symptoms in HIV-infected individuals (ACTG 5097s). HIV Clin Trials 2009; 10: 343-355
  • 8 McArthur JC, Brew BJ, Nath A. Neurological complications of HIV infection. Lancet Neurol 2005; 4: 543-555
  • 9 Chang L, Ernst T, Leonido-Yee M et al. Cerebral metabolite abnormalities correlate with clinical severity of HIV-1 cognitive motor complex. Neurology 1999; 52: 100-108
  • 10 Winston A, Duncombe C, Li PC et al. Two patterns of cerebral metabolite abnormalities are detected on proton magnetic resonance spectroscopy in HIV-infected subjects commencing antiretroviral therapy. Neuroradiology 2012; 54: 1331-1339
  • 11 Marshall DW. HIV penetration of the BBB. Neurology 1988; 38: 1000-1001
  • 12 Hagberg L, Cinque P, Gisslen M et al. Cerebrospinal fluid neopterin: an informative biomarker of central nervous system immune activation in HIV-1 infection. AIDS Res Ther 2010; 7: 15
  • 13 Abdulle S, Mellgren A, Brew BJ et al. CSF neurofilament protein (NFL) – a marker of active HIV-related neurodegeneration. J Neurol 2007; 254: 1026-1032
  • 14 Arendt G, Nolting T, Frisch C et al. Intrathecal viral replication and cerebral deficits in different stages of human immunodeficiency virus disease. J Neurovirol 2007; 13: 225-232
  • 15 Gupta G. Current concepts in HIV pathogenesis and treatment. J Calif Dent Assoc 2001; 29: 129-135
  • 16 Heaton RK, Franklin DR, Ellis RJ et al. HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol 2011; 17: 3-16
  • 17 Pozniak A, Rackstraw S, Deayton J et al. HIV-associated neurocognitive disease: case studies and suggestions for diagnosis and management in different patient subgroups. Antivir Ther 2014; 19: 1-13
  • 18 Cysique LA, Letendre SL, Ake C et al. Incidence and nature of cognitive decline over 1 year among HIV-infected former plasma donors in China. AIDS (London, England) 2010; 24: 983-990
  • 19 Shiramizu B, Ananworanich J, Chalermchai T et al. Failure to clear intra-monocyte HIV infection linked to persistent neuropsychological testing impairment after first-line combined antiretroviral therapy. J Neurovirol 2012; 18: 69-73
  • 20 Cysique LA, Brew BJ. Neuropsychological functioning and antiretroviral treatment in HIV/AIDS: a review. Neuropsychol Rev 2009; 19: 169-185
  • 21 Letendre S, Marquie-Beck J, Capparelli E et al. Validation of the CNS Penetration-Effectiveness rank for quantifying antiretroviral penetration into the central nervous system. Arch Neurol 2008; 65: 65-70
  • 22 Schweinsburg BC, Taylor MJ, Alhassoon OM et al. Brain mitochondrial injury in human immunodeficiency virus-seropositive (HIV+) individuals taking nucleoside reverse transcriptase inhibitors. J Neurovirol 2005; 11: 356-364
  • 23 Spector SA, Singh KK, Gupta S et al. APOE epsilon4 and MBL-2 O/O genotypes are associated with neurocognitive impairment in HIV-infected plasma donors. AIDS (London, England) 2010; 24: 1471-1479
  • 24 Wachtman LM, Skolasky RL, Tarwater PM et al. Platelet decline: an avenue for investigation into the pathogenesis of human immunodeficiency virus-associated dementia. Arch Neurol 2007; 64: 1264-1272
  • 25 Centner CM, Bateman KJ, Heckmann JM. Manifestations of HIV infection in the peripheral nervous system. Lancet Neurol 2013; 12: 295-309
  • 26 Arenas-Pinto A, Bhaskaran K, Dunn D et al. The risk of developing peripheral neuropathy induced by nucleoside reverse transcriptase inhibitors decreases over time: evidence from the Delta trial. Antivir Ther 2008; 13: 289-295
  • 27 Ellis RJ, Rosario D, Clifford DB et al. Continued high prevalence and adverse clinical impact of human immunodeficiency virus-associated sensory neuropathy in the era of combination antiretroviral therapy: the CHARTER Study. Arch Neurol 2010; 67: 552-558
  • 28 Hahn K, Robinson B, Anderson C et al. Differential effects of HIV infected macrophages on dorsal root ganglia neurons and axons. Exp Neurol 2008; 210: 30-40
  • 29 Hao S. The Molecular and Pharmacological Mechanisms of HIV-Related Neuropathic Pain. Curr Neuropharmcol 2013; 11: 499-512
  • 30 Bhangoo SK, Ren D, Miller RJ et al. CXCR4 chemokine receptor signaling mediates pain hypersensitivity in association with antiretroviral toxic neuropathy. Brain Behav Immun 2007; 21: 581-591
  • 31 Bhangoo SK, Ripsch MS, Buchanan DJ et al. Increased chemokine signaling in a model of HIV1-associated peripheral neuropathy. Molecular Pain 2009; 5: 48
  • 32 Huang W, Zheng W, Ouyang H et al. Mechanical allodynia induced by nucleoside reverse transcriptase inhibitor is suppressed by p55TNFSR mediated by herpes simplex virus vector through the SDF1 alpha/CXCR4 System in rats. Anesth Analg 2014; 118: 671-680
  • 33 Hahn K, Arendt G, Braun JS et al. A placebo-controlled trial of gabapentin for painful HIV-associated sensory neuropathies. J Neurol 2004; 251: 1260-1266
  • 34 Hahn K, Husstedt IW. [HIV-associated neuropathies]. Nervenarzt 2010; 81: 409-417
  • 35 Simpson DM, Brown S, Tobias J. Controlled trial of high-concentration capsaicin patch for treatment of painful HIV neuropathy. Neurology 2008; 70: 2305-2313
  • 36 Martin C, Solders G, Sonnerborg A et al. Antiretroviral therapy may improve sensory function in HIV-infected patients: a pilot study. Neurology 2000; 54: 2120-2127
  • 37 Brannagan 3rd TH, Zhou Y. HIV-associated Guillain-Barre syndrome. J Neurol Sci 2003; 208: 39-42
  • 38 Thornton CA, Latif AS, Emmanuel JC. Guillain-Barre syndrome associated with human immunodeficiency virus infection in Zimbabwe. Neurology 1991; 41: 812-815
  • 39 Gardner K, Hall PA, Chinnery PF et al. HIV treatment and associated mitochondrial pathology: review of 25 years of in vitro, animal, and human studies. Toxicol Pathol 2014; 42: 811-822
  • 40 Rodkjaer L, Laursen T, Balle N et al. Depression in patients with HIV is under-diagnosed: a cross-sectional study in Denmark. HIV Med 2010; 11: 46-53
  • 41 Husstedt IW, Arendt G. HIV und ZNS Management neurologischer Erkrankungen. 2.. Aufl. Königswinter: Immedis-Verlag; 2012
  • 42 Cruess DG, Evans DL, Repetto MJ et al. Prevalence, diagnosis, and pharmacological treatment of mood disorders in HIV disease. Biol Psychiatry 2003; 54: 307-316
  • 43 Ickovics JR, Hamburger ME, Vlahov D et al. Mortality, CD4 cell decline, and depressive symptoms among HIV-seropositive women: longitudinal analysis from the HIV Epidemiology Research Study. JAMA 2001; 285: 1466-1477
  • 44 Smith C, Ryom L, Monforte A et al. Lack of association between use of efavirenz and death from suicide: evidence from the D:A:D study. J Int Aids Soc 2014; 17 (Suppl. 03) 19512 eCollection
  • 45 Schuster R, Bornovalova M, Hunt E. The influence of depression on the progression of HIV: direct and indirect effects. Behav Modif 2012; 36: 123-145
  • 46 Kaestner F, Anneken K, Mostert C et al. Depression associated with antiretroviral drug therapy in HIV: case report and overview. Int J STD AIDS 2012; 23: e14-19
  • 47 Pieper AA, Treisman GJ. Drug treatment of depression in HIV-positive patients: safety considerations. Drug Saf 2005; 28: 753-762
  • 48 Horberg MA, Silverberg MJ, Hurley LB et al. Effects of depression and selective serotonin reuptake inhibitor use on adherence to highly active antiretroviral therapy and on clinical outcomes in HIV-infected patients. J Acquir Immune Defic Syndr (1999) 2008; 47: 384-390
  • 49 Owe-Larsson B, Sall L, Salamon E et al. HIV infection and psychiatric illness. Afr J Psychiatry 2009; 12: 115-128
  • 50 Buchacz K, Baker RK, Palella Jr FJ et al. AIDS-defining opportunistic illnesses in US patients, 1994–2007: a cohort study. AIDS (London, England) 2010; 24: 1549-1559
  • 51 French MA, Price P, Stone SF. Immune restoration disease after antiretroviral therapy. AIDS (London, England) 2004; 18: 1615-1627
  • 52 Goebel FD. Immune reconstitution inflammatory syndrome (IRIS) – another new disease entity following treatment initiation of HIV infection. Infection 2005; 33: 43-45
  • 53 Committee UKCHCSS, Garvey L, Winston A et al. HIV-associated central nervous system diseases in the recent combination antiretroviral therapy era. Eur J Neurol 2011; 18: 527-534
  • 54 Tan IL, Smith BR, von Geldern G et al. HIV-associated opportunistic infections of the CNS. Lancet Neurol 2012; 11: 605-617
  • 55 Day JN, Chau TT, Lalloo DG. Combination antifungal therapy for cryptococcal meningitis. N Engl J Med 2013; 368: 2522-2523
  • 56 Schneider-Hohendorf T, Philipp K, Husstedt IW et al. Specific loss of cellular L-selectin on CD4(+) T cells is associated with progressive multifocal leukoencephalopathy development during HIV infection. AIDS (London, England) 2014; 28: 793-795
  • 57 Hoffmann C, Horst HA, Albrecht H et al. Progressive multifocal leucoencephalopathy with unusual inflammatory response during antiretroviral treatment. J Neurol Neurosurg Psychiatry 2003; 74: 1142-1144
  • 58 Martin-Blondel G, Bauer J, Cuvinciuc V et al. In situ evidence of JC virus control by CD8+ T cells in PML-IRIS during HIV infection. Neurology 2013; 81: 964-970
  • 59 Sahraian MA, Radue EW, Eshaghi A et al. Progressive multifocal leukoencephalopathy: a review of the neuroimaging features and differential diagnosis. Eur J Neurol 2012; 19: 1060-1069
  • 60 Longley N, Harrison TS, Jarvis JN. Cryptococcal immune reconstitution inflammatory syndrome. Curr Opin Infect Dis 2013; 26: 26-34
  • 61 Skiest DJ, Hester LJ, Hardy RD. Cryptococcal immune reconstitution inflammatory syndrome: report of four cases in three patients and review of the literature. J Infect 2005; 51: e289-297
  • 62 Giacomini PS, Rozenberg A, Metz I et al. Maraviroc and JC virus-associated immune reconstitution inflammatory syndrome. N Eng J Med 2014; 370: 486-488
  • 63 Lawn SD, Meintjes G. Pathogenesis and prevention of immune reconstitution disease during antiretroviral therapy. Expert Rev Anti Infect Ther 2011; 9: 415-430
  • 64 Harrison KM, Song R, Zhang X. Life expectancy after HIV diagnosis based on national HIV surveillance data from 25 states, United States. J Acquir Immune Defic Syndr 2010; 53: 124-130
  • 65 Friis-Moller N, Weber R, Reiss P et al. Cardiovascular disease risk factors in HIV patients – association with antiretroviral therapy. Results from the DAD study. Aids 2003; 17: 1179-1193
  • 66 Grunfeld C, Delaney JA, Wanke C et al. Preclinical atherosclerosis due to HIV infection: carotid intima-medial thickness measurements from the FRAM study. Aids 2009; 23: 1841-1849
  • 67 D’Ascenzo F, Quadri G, Cerrato E et al. A meta-analysis investigating incidence and features of stroke in HIV-infected patients in the highly active antiretroviral therapy era. J Cardiovasc Med 2014; DOI: 10.2459/JCM.0b013e328365ca31.
  • 68 Krishnan S, Schouten JT, Atkinson B et al. Metabolic syndrome before and after initiation of antiretroviral therapy in treatment-naive HIV-infected individuals. JJ Acquir Immune Defic Syndr 2012; 61: 381-389
  • 69 Schouten JN, Van der Ende ME, Koeter T et al. Risk factors and outcome of HIV-associated idiopathic noncirrhotic portal hypertension. Aliment Pharmacol Ther 2012; 36: 875-885
  • 70 Engels EA. Non-AIDS-defining malignancies in HIV-infected persons: etiologic puzzles, epidemiologic perils, prevention opportunities. Aids 2009; 23: 875-885
  • 71 Mani D, Haigentz Jr M, Aboulafia DM. Lung cancer in HIV Infection. Clin Lung Cancer 2012; 13: 6-13
  • 72 Silverberg MJ, Abrams DI. AIDS-defining and non-AIDS-defining malignancies: cancer occurrence in the antiretroviral therapy era. Curr Opin Oncol 2007; 19: 446-451
  • 73 Kim AY, Onofrey S, Church DR. An epidemiologic update on hepatitis C infection in persons living with or at risk of HIV infection. J Infect Dis 2013; 207 (Suppl. 01) S1-6
  • 74 Murray J, Fishman SL, Ryan E et al. Clinicopathologic correlates of hepatitis C virus in brain: a pilot study. J Neurovirol 2008; 14: 17-27
  • 75 Institut RK. Syphilis Infektionen in Deutschland. Epidemiol Bulletin 2012; 48
  • 76 Conde-Sendin MA, Amela-Peris R, Aladro-Benito Y et al. Current clinical spectrum of neurosyphilis in immunocompetent patients. Eur Neurol 2004; 52: 29-35
  • 77 Ho EL, Ronquillo R, Altmeppen H et al. Cellular Composition of Cerebrospinal Fluid in HIV-1 Infected and Uninfected Subjects. PLoS One 2013; 8: e66188
  • 78 Arendt G, Nolting T. [Neurological complications of HIV infection]. Nervenarzt 2008; 79: 1449-1462; 1463
  • 79 Letendre SL, Ellis RJ, Ances BM et al. Neurologic complications of HIV disease and their treatment. Top HIV Med 2010; 18: 45-55
  • 80 Stanojevic M, Zerjav S, Jevtovic D et al. CMV DNA in blood and CSF of HIV infected patients. Virus Res 2002; 85: 117-122
  • 81 Maschke M, Kastrup O, Diener HC. CNS manifestations of cytomegalovirus infections: diagnosis and treatment. CNS Drugs 2002; 16: 303-315
  • 82 Wyen C, Hoffmann C, Schmeisser N et al. Progressive multifocal leukencephalopathy in patients on highly active antiretroviral therapy: survival and risk factors of death. J Acquir Immune Defic Syndr 2004; 37: 1263-1268
  • 83 Ambinder RF. Epstein-Barr virus associated lymphoproliferations in the AIDS setting. Eur J Cancer 2001; 37: 1209-1216
  • 84 Bossolasco S, Cinque P, Ponzoni M et al. Epstein-Barr virus DNA load in cerebrospinal fluid and plasma of patients with AIDS-related lymphoma. J Neurovirol 2002; 8: 432-438
  • 85 Chuck SL, Sande MA. Infections with Cryptococcus neoformans in the acquired immunodeficiency syndrome. N Engl J Med 1989; 321: 794-799
  • 86 Bicanic T, Wood R, Bekker LG et al. Antiretroviral roll-out, antifungal roll-back: access to treatment for cryptococcal meningitis. Lancet Infect Dis 2005; 5: 530-531
  • 87 Marx GE, Chan ED. Tuberculous meningitis: diagnosis and treatment overview. Tuberc Res Treat 2011; 2011: 798764
  • 88 Brancusi F, Farrar J, Heemskerk D. Tuberculous meningitis in adults: a review of a decade of developments focusing on prognostic factors for outcome. Future Microbiol 2012; 7: 1101-1116
  • 89 Marra CM, Maxwell CL, Smith SL et al. Cerebrospinal fluid abnormalities in patients with syphilis: association with clinical and laboratory features. J Infect Dis 2004; 189: 369-376
  • 90 Poliseli R, Vidal JE, Penalva De Oliveira AC et al. Neurosyphilis in HIV-infected patients: clinical manifestations, serum venereal disease research laboratory titers, and associated factors to symptomatic neurosyphilis. Sex Transm Dis 2008; 35: 425-429
  • 91 Cingolani A, De Luca A, Ammassari A et al. PCR detection of Toxoplasma gondii DNA in CSF for the differential diagnosis of AIDS-related focal brain lesions. J Med Microbiol 1996; 45: 472-476
  • 92 Arendt G, von Giesen HJ, Hefter H et al. Long-term course and outcome in AIDS patients with cerebral toxoplasmosis. Acta Neurol Scand 1999; 100: 178-184
  • 93 Price RW, Peterson J, Fuchs D et al. Approach to cerebrospinal fluid (CSF) biomarker discovery and evaluation in HIV infection. J Neuroimmune Pharmacol 2013; 8: 1147-1158
  • 94 Clifford DB, Ances BM. HIV-associated neurocognitive disorder. The Lancet infectious diseases 2013; 13: 976-986
  • 95 Ellis RJ, Moore DJ, Childers ME et al. Progression to neuropsychological impairment in human immunodeficiency virus infection predicted by elevated cerebrospinal fluid levels of human immunodeficiency virus RNA. Arch Neurol 2002; 59: 923-928
  • 96 Valcour V, Chalermchai T, Sailasuta N et al. Central nervous system viral invasion and inflammation during acute HIV infection. J Infect Dis 2012; 206: 275-282
  • 97 Steinbrink F, Evers S, Buerke B et al. Cognitive impairment in HIV infection is associated with MRI and CSF pattern of neurodegeneration. Eur J Neurol 2013; 20: 420-428
  • 98 Spudich SS, Nilsson AC, Lollo ND et al. Cerebrospinal fluid HIV infection and pleocytosis: relation to systemic infection and antiretroviral treatment. BMC Infect Dis 2005; 5: 98
  • 99 Yilmaz A, Yiannoutsos CT, Fuchs D et al. Cerebrospinal fluid neopterin decay characteristics after initiation of antiretroviral therapy. J Neuroinflamm 2013; 10: 62
  • 100 Dunfee RL, Thomas ER, Gorry PR et al. The HIV Env variant N283 enhances macrophage tropism and is associated with brain infection and dementia. Proc Natl Acad Sci U S A 2006; 103: 15160-15165
  • 101 Stam AJ, Nijhuis M, van den Bergh WM et al. Differential genotypic evolution of HIV-1 quasispecies in cerebrospinal fluid and plasma: a systematic review. AIDS Rev 2013; 15: 152-161