J Knee Surg 2015; 28(05): 363-369
DOI: 10.1055/s-0035-1551834
Special Focus Section
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Reverse Engineering Nature to Design Biomimetic Total Knee Implants

Kartik Mangudi Varadarajan
1   Department of Orthopedic Surgery, Massachusetts General Hospital, Boston, Massachusetts
,
Thomas Zumbrunn
1   Department of Orthopedic Surgery, Massachusetts General Hospital, Boston, Massachusetts
,
Harry E. Rubash
1   Department of Orthopedic Surgery, Massachusetts General Hospital, Boston, Massachusetts
,
Henrik Malchau
1   Department of Orthopedic Surgery, Massachusetts General Hospital, Boston, Massachusetts
,
Orhun K. Muratoglu
1   Department of Orthopedic Surgery, Massachusetts General Hospital, Boston, Massachusetts
,
Guoan Li
1   Department of Orthopedic Surgery, Massachusetts General Hospital, Boston, Massachusetts
› Author Affiliations
Further Information

Publication History

10 February 2015

26 February 2015

Publication Date:
10 July 2015 (online)

Abstract

While contemporary total knee arthroplasty (TKA) provides tremendous clinical benefits, the normal feel and function of the knee is not fully restored. To address this, a novel design process was developed to reverse engineer “biomimetic” articular surfaces that are compatible with normal soft-tissue envelope and kinematics of the knee. The biomimetic articular surface is created by moving the TKA femoral component along in vivo kinematics of normal knees and carving out the tibial articular surface from a rectangular tibial block. Here, we describe the biomimetic design process. In addition, we utilize geometric comparisons and kinematic simulations to show that; (1) tibial articular surfaces of conventional implants are fundamentally incompatible with normal knee motion, and (2) the anatomic geometry of the biomimetic surface contributes directly to restoration of normal knee kinematics. Such biomimetic implants may enable us to achieve the long sought after goal of a “normal” knee post-TKA surgery.

 
  • References

  • 1 Losina E, Thornhill TS, Rome BN, Wright J, Katz JN. The dramatic increase in total knee replacement utilization rates in the United States cannot be fully explained by growth in population size and the obesity epidemic. J Bone Joint Surg Am 2012; 94 (3) 201-207
  • 2 Stoddard JE, Deehan DJ, Bull AM, McCaskie AW, Amis AA. The kinematics and stability of single-radius versus multi-radius femoral components related to mid-range instability after TKA. J Orthop Res 2013; 31 (1) 53-58
  • 3 Clary CW, Fitzpatrick CK, Maletsky LP, Rullkoetter PJ. The influence of total knee arthroplasty geometry on mid-flexion stability: an experimental and finite element study. J Biomech 2013; 46 (7) 1351-1357
  • 4 Greene KA. Gender-specific design in total knee arthroplasty. J Arthroplasty 2007; 22 (7) (Suppl. 03) 27-31
  • 5 Yue B, Varadarajan KM, Moynihan AL, Liu F, Rubash HE, Li G. Kinematics of medial osteoarthritic knees before and after posterior cruciate ligament retaining total knee arthroplasty. J Orthop Res 2011; 29 (1) 40-46
  • 6 Moro-oka TA, Muenchinger M, Canciani JP, Banks SA. Comparing in vivo kinematics of anterior cruciate-retaining and posterior cruciate-retaining total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 2007; 15 (1) 93-99
  • 7 Varadarajan KM, Harry RE, Johnson T, Li G. Can in vitro systems capture the characteristic differences between the flexion-extension kinematics of the healthy and TKA knee?. Med Eng Phys 2009; 31 (8) 899-906
  • 8 Dennis DA, Komistek RD, Mahfouz MR, Walker SA, Tucker A. A multicenter analysis of axial femorotibial rotation after total knee arthroplasty. Clin Orthop Relat Res 2004; (428) 180-189
  • 9 Noble PC, Gordon MJ, Weiss JM, Reddix RN, Conditt MA, Mathis KB. Does total knee replacement restore normal knee function?. Clin Orthop Relat Res 2005; (431) 157-165
  • 10 de Beer J, Petruccelli D, Adili A, Piccirillo L, Wismer D, Winemaker M. Patient perspective survey of total hip vs total knee arthroplasty surgery. J Arthroplasty 2012; 27 (6) 865-9.e1 , 5
  • 11 Bourne RB, Chesworth BM, Davis AM, Mahomed NN, Charron KD. Patient satisfaction after total knee arthroplasty: who is satisfied and who is not?. Clin Orthop Relat Res 2010; 468 (1) 57-63
  • 12 Nam D, Nunley RM, Barrack RL. Patient dissatisfaction following total knee replacement: a growing concern?. Bone Joint J 2014; 96-B (11, Supple A) 96-100
  • 13 Walker PS, Lowry MT, Kumar A. The effect of geometric variations in posterior-stabilized knee designs on motion characteristics measured in a knee loading machine. Clin Orthop Relat Res 2014; 472 (1) 238-247
  • 14 Jaffry Z, Masjedi M, Clarke S , et al. Unicompartmental knee arthroplasties: robot vs. patient specific instrumentation. Knee 2014; 21 (2) 428-434
  • 15 Jeffcote B, Nicholls R, Schirm A, Kuster MS. The variation in medial and lateral collateral ligament strain and tibiofemoral forces following changes in the flexion and extension gaps in total knee replacement. A laboratory experiment using cadaver knees. J Bone Joint Surg Br 2007; 89 (11) 1528-1533
  • 16 Tokuhara Y, Kadoya Y, Nakagawa S, Kobayashi A, Takaoka K. The flexion gap in normal knees. An MRI study. J Bone Joint Surg Br 2004; 86 (8) 1133-1136
  • 17 Sumino T, Gadikota HR, Varadarajan KM, Kwon YM, Rubash HE, Li G. Do high flexion posterior stabilised total knee arthroplasty designs increase knee flexion? A meta analysis. Int Orthop 2011; 35 (9) 1309-1319
  • 18 Suggs JF, Kwon YM, Durbhakula SM, Hanson GR, Li G. In vivo flexion and kinematics of the knee after TKA: comparison of a conventional and a high flexion cruciate-retaining TKA design. Knee Surg Sports Traumatol Arthrosc 2009; 17 (2) 150-156
  • 19 Nunley RM, Nam D, Berend KR , et al. New total knee arthroplasty designs: do young patients notice?. Clin Orthop Relat Res 2015; 473 (1) 101-108
  • 20 Thomsen MG, Husted H, Bencke J, Curtis D, Holm G, Troelsen A. Do we need a gender-specific total knee replacement? A randomised controlled trial comparing a high-flex and a gender-specific posterior design. J Bone Joint Surg Br 2012; 94 (6) 787-792
  • 21 Freeman MA, Pinskerova V. The movement of the normal tibio-femoral joint. J Biomech 2005; 38 (2) 197-208
  • 22 Johal P, Williams A, Wragg P, Hunt D, Gedroyc W. Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using 'interventional' MRI. J Biomech 2005; 38 (2) 269-276
  • 23 Komistek RD, Dennis DA, Mahfouz M. In vivo fluoroscopic analysis of the normal human knee. Clin Orthop Relat Res 2003; (410) 69-81
  • 24 Li JS, Hosseini A, Cancre L, Ryan N, Rubash HE, Li G. Kinematic characteristics of the tibiofemoral joint during a step-up activity. Gait Posture 2013; 38 (4) 712-716
  • 25 Moro-oka TA, Hamai S, Miura H , et al. Dynamic activity dependence of in vivo normal knee kinematics. J Orthop Res 2008; 26 (4) 428-434
  • 26 Varadarajan KM, Gill TJ, Freiberg AA, Rubash HE, Li G. Patellar tendon orientation and patellar tracking in male and female knees. J Orthop Res 2010; 28 (3) 322-328
  • 27 Mihalko WM, Conner DJ, Benner R, Williams JL. How does TKA kinematics vary with transverse plane alignment changes in a contemporary implant?. Clin Orthop Relat Res 2012; 470 (1) 186-192
  • 28 Morra EA, Rosca M, Greenwald JF, Greenwald AS. The influence of contemporary knee design on high flexion: a kinematic comparison with the normal knee. J Bone Joint Surg Am 2008; 90 (Suppl. 04) 195-201
  • 29 Mihalko WM, Williams JL. Total knee arthroplasty kinematics may be assessed using computer modeling: a feasibility study. Orthopedics 2012; 35 (10, Suppl): 40-44
  • 30 Woo SL, Hollis JM, Adams DJ, Lyon RM, Takai S. Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. Am J Sports Med 1991; 19 (3) 217-225
  • 31 Trent PS, Walker PS, Wolf B. Ligament length patterns, strength, and rotational axes of the knee joint. Clin Orthop Relat Res 1976; (117) 263-270
  • 32 Robinson JR, Bull AM, Amis AA. Structural properties of the medial collateral ligament complex of the human knee. J Biomech 2005; 38 (5) 1067-1074
  • 33 Momersteeg TJ, Blankevoort L, Huiskes R, Kooloos JG, Kauer JM, Hendriks JC. The effect of variable relative insertion orientation of human knee bone-ligament-bone complexes on the tensile stiffness. J Biomech 1995; 28 (6) 745-752
  • 34 Livingston LA. The quadriceps angle: a review of the literature. J Orthop Sports Phys Ther 1998; 28 (2) 105-109
  • 35 Varadarajan KM, Zumbrunn T, Rubash HE , et al. Cruciate retaining biomimetic implant can restore normal kinematics following total knee arthroplasty (TKA). Paper presented at: International Society for Technology in Arthroplasty (ISTA) Annual Congress; October 16–19, 2013; Palm Beach, FL
  • 36 Bertin KC, Komistek RD, Dennis DA, Hoff WA, Anderson DT, Langer T. In vivo determination of posterior femoral rollback for subjects having a NexGen posterior cruciate-retaining total knee arthroplasty. J Arthroplasty 2002; 17 (8) 1040-1048
  • 37 Fiacchi F, Catani F, Digennaro V, Gialdini M, Grandi G. In Vivo Kinematics of Cruciate Retaining Total Knee Arthoplasty Operated With Patient Specific Technology During Activities of Daily Living. Bone Joint J Orthopaedic Proceedings Supplement 2013; 95: 23
  • 38 Okamoto N, Breslauer L, Hedley AK, Mizuta H, Banks SA. In vivo knee kinematics in patients with bilateral total knee arthroplasty of 2 designs. J Arthroplasty 2011; 26 (6) 914-918
  • 39 Shimizu N, Tomita T, Patil S , et al. Comparison of TKA kinematics between cruciate retaining insert and condylar stabilized insert. Paper presented at: 59th Annual Meeting of the Orthopaedics Research Society; 2013; San Antonio, TX
  • 40 Delport HP, Banks SA, De Schepper J, Bellemans J. A kinematic comparison of fixed- and mobile-bearing knee replacements. J Bone Joint Surg Br 2006; 88 (8) 1016-1021
  • 41 Koo S, Andriacchi TP. The knee joint center of rotation is predominantly on the lateral side during normal walking. J Biomech 2008; 41 (6) 1269-1273
  • 42 Benoit DL, Ramsey DK, Lamontagne M, Xu L, Wretenberg P, Renström P. In vivo knee kinematics during gait reveals new rotation profiles and smaller translations. Clin Orthop Relat Res 2007; 454 (454) 81-88
  • 43 Walker PS, Sussman-Fort JM, Yildirim G, Boyer J. Design features of total knees for achieving normal knee motion characteristics. J Arthroplasty 2009; 24 (3) 475-483
  • 44 Walker PS. Bearing surface design in total knee replacement. Eng Med 1988; 17 (4) 149-156
  • 45 Zumbrunn T, Varadarajan KM, Rubash HE , et al. Biomimetic total knee arthroplasty with anterior cruciate ligament (ACL) preservation restores normal kinematics. Paper presented at: International Society for Technology in Arthroplasty (ISTA) Annual Congress; October 16–19, 2013; Palm Beach, FL