Am J Perinatol 2015; 32(10): 905-909
DOI: 10.1055/s-0035-1547328
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Oxidative Stress-Mediated Damage in Newborns with Necrotizing Enterocolitis: A Possible Role of Melatonin

Lucia Marseglia
1   Neonatal and Pediatric Intensive Care Unit, Department of Pediatrics, University of Messina, Messina, Italy
,
Gabriella D'Angelo
1   Neonatal and Pediatric Intensive Care Unit, Department of Pediatrics, University of Messina, Messina, Italy
,
Sara Manti
1   Neonatal and Pediatric Intensive Care Unit, Department of Pediatrics, University of Messina, Messina, Italy
,
Salvatore Aversa
1   Neonatal and Pediatric Intensive Care Unit, Department of Pediatrics, University of Messina, Messina, Italy
,
Russel J. Reiter
2   Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
,
Pietro Antonuccio
3   Unit of Pediatric Surgery, Department of Pediatrics, University of Messina, Messina, Italy
,
Antonio Centorrino
3   Unit of Pediatric Surgery, Department of Pediatrics, University of Messina, Messina, Italy
,
Carmelo Romeo
3   Unit of Pediatric Surgery, Department of Pediatrics, University of Messina, Messina, Italy
,
Pietro Impellizzeri
3   Unit of Pediatric Surgery, Department of Pediatrics, University of Messina, Messina, Italy
,
Eloisa Gitto
1   Neonatal and Pediatric Intensive Care Unit, Department of Pediatrics, University of Messina, Messina, Italy
› Author Affiliations
Further Information

Publication History

21 November 2014

15 January 2015

Publication Date:
04 March 2015 (online)

Abstract

Background Necrotizing enterocolitis is a gastrointestinal surgical emergency in premature neonates. Free radicals have been linked to the development of the disease in infants. Ischemia, hypoxia–reperfusion, infection, and inflammation produce elevated levels of reactive oxygen species, impairing the redox balance and shifting cells into a state of oxidative stress. Melatonin, an effective direct free-radical scavenger and indirect antioxidant agent, exerts pleiotropic action on the human body. Several studies have tested the efficacy of melatonin in counteracting oxidative injury in diseases of newborns. Melatonin has been widely used in newborns including cases of asphyxia, respiratory distress syndrome, and sepsis, and no significant toxicity or treatment-related side effects with long-term melatonin therapy have been reported.

Conclusion Therefore, melatonin, besides standard therapies, could be considered as a potentially safe approach to prevent and treat necrotizing enterocolitis in premature infants. This review summarizes what is known about the role of oxidative stress, and potentially beneficial effects of antioxidants, such as melatonin, in necrotizing enterocolitis.

 
  • References

  • 1 Srinivasan PS, Brandler MD, D'Souza A. Necrotizing enterocolitis. Clin Perinatol 2008; 35 (1) 251-272 , x
  • 2 Guthrie SO, Gordon PV, Thomas V, Thorp JA, Peabody J, Clark RH. Necrotizing enterocolitis among neonates in the United States. J Perinatol 2003; 23 (4) 278-285
  • 3 Neu J. Necrotizing enterocolitis: the search for a unifying pathogenic theory leading to prevention. Pediatr Clin North Am 1996; 43 (2) 409-432
  • 4 Hunter CJ, Upperman JS, Ford HR, Camerini V. Understanding the susceptibility of the premature infant to necrotizing enterocolitis (NEC). Pediatr Res 2008; 63 (2) 117-123
  • 5 Sodhi CP, Neal MD, Siggers R , et al. Intestinal epithelial Toll-like receptor 4 regulates goblet cell development and is required for necrotizing enterocolitis in mice. Gastroenterology 2012; 143 (3) 708-18.e1 , 5
  • 6 Good M, Sodhi C, Siggers R , et al. Epithelial growth factor attenuates the severity of experimental necrotizing enterocolitis and inhibits toll-like receptor 4 signaling in enterocytes. E-PAS2011 2011; 2720-2723
  • 7 Carlisle EM, Morowitz MJ. The intestinal microbiome and necrotizing enterocolitis. Curr Opin Pediatr 2013; 25 (3) 382-387
  • 8 Indrio F, Neu J. The intestinal microbiome of infants and the use of probiotics. Curr Opin Pediatr 2011; 23 (2) 145-150
  • 9 Kelly N, Friend K, Boyle P , et al. The role of the glutathione antioxidant system in gut barrier failure in a rodent model of experimental necrotizing enterocolitis. Surgery 2004; 136 (3) 557-566
  • 10 Okur H, Küçükaydin M, Köse K, Kontaş O, Doğam P, Kazez A. Hypoxia-induced necrotizing enterocolitis in the immature rat: the role of lipid peroxidation and management by vitamin E. J Pediatr Surg 1995; 30 (10) 1416-1419
  • 11 Martindale JL, Holbrook NJ. Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 2002; 192 (1) 1-15
  • 12 Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000; 408 (6809) 239-247
  • 13 Nadler EP, Dickinson E, Knisely A , et al. Expression of inducible nitric oxide synthase and interleukin-12 in experimental necrotizing enterocolitis. J Surg Res 2000; 92 (1) 71-77
  • 14 Halpern MD, Holubec H, Dominguez JA , et al. Up-regulation of IL-18 and IL-12 in the ileum of neonatal rats with necrotizing enterocolitis. Pediatr Res 2002; 51 (6) 733-739
  • 15 Ford H, Watkins S, Reblock K, Rowe M. The role of inflammatory cytokines and nitric oxide in the pathogenesis of necrotizing enterocolitis. J Pediatr Surg 1997; 32 (2) 275-282
  • 16 Nadler EP, Stanford A, Zhang XR, Upperman JS, Ford HR. IL-11 is upregulated in human NEC. Curr Surg 2000; 57 (6) 639
  • 17 Viscardi RM, Lyon NH, Sun CC, Hebel JR, Hasday JD. Inflammatory cytokine mRNAs in surgical specimens of necrotizing enterocolitis and normal newborn intestine. Pediatr Pathol Lab Med 1997; 17 (4) 547-559
  • 18 Lee JS, Polin RA. Treatment and prevention of necrotizing enterocolitis. Semin Neonatol 2003; 8 (6) 449-459
  • 19 Lin PW, Stoll BJ. Necrotising enterocolitis. Lancet 2006; 368 (9543) 1271-1283
  • 20 Henry MC, Moss RL. Necrotizing enterocolitis. Annu Rev Med 2009; 60: 111-124
  • 21 Caplan MS, Sun XM, Hseuh W, Hageman JR. Role of platelet activating factor and tumor necrosis factor-alpha in neonatal necrotizing enterocolitis. J Pediatr 1990; 116 (6) 960-964
  • 22 Edelson MB, Bagwell CE, Rozycki HJ. Circulating pro- and counterinflammatory cytokine levels and severity in necrotizing enterocolitis. Pediatrics 1999; 103 (4 Pt 1) 766-771
  • 23 Guven A, Tunc T, Topal T , et al. Alpha-lipoic acid and ebselen prevent ischemia/reperfusion injury in the rat intestine. Surg Today 2008; 38 (11) 1029-1035
  • 24 Czyrko C, Steigman C, Turley DL, Drott HR, Ziegler MM. The role of reperfusion injury in occlusive intestinal ischemia of the neonate: malonaldehyde-derived fluorescent products and correlation of histology. J Surg Res 1991; 51 (1) 1-4
  • 25 Vaughan WG, Horton JW, Walker PB. Allopurinol prevents intestinal permeability changes after ischemia-reperfusion injury. J Pediatr Surg 1992; 27 (8) 968-972 , discussion 972–973
  • 26 Slater TF. Free-radical mechanisms in tissue injury. Biochem J 1984; 222 (1) 1-15
  • 27 Hsueh W, Caplan MS, Qu XW, Tan XD, De Plaen IG, Gonzalez-Crussi F. Neonatal necrotizing enterocolitis: clinical considerations and pathogenetic concepts. Pediatr Dev Pathol 2003; 6 (1) 6-23
  • 28 Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 1995; 270 (5240) 1326-1331
  • 29 Harper SJ, LoGrasso P. Signalling for survival and death in neurones: the role of stress-activated kinases, JNK and p38. Cell Signal 2001; 13 (5) 299-310
  • 30 Crossthwaite AJ, Hasan S, Williams RJ. Hydrogen peroxide-mediated phosphorylation of ERK1/2, Akt/PKB and JNK in cortical neurones: dependence on Ca(2+) and PI3-kinase. J Neurochem 2002; 80 (1) 24-35
  • 31 Li C, Jackson RM. Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am J Physiol Cell Physiol 2002; 282 (2) C227-C241
  • 32 Perrone S, Tataranno ML, Negro S , et al. May oxidative stress biomarkers in cord blood predict the occurrence of necrotizing enterocolitis in preterm infants?. J Matern Fetal Neonatal Med 2012; 25 (Suppl. 01) 128-131
  • 33 Saugstad OD. Mechanisms of tissue injury by oxygen radicals: implications for neonatal disease. Acta Paediatr 1996; 85 (1) 1-4
  • 34 Halliwell B, Gutteridge JM. Free radicals in biology and medicine. 3rd ed. Oxford, United Kingdom: Oxford University Press; 1999
  • 35 Reiter RJ, Tan DX, Osuna C, Gitto E. Actions of melatonin in the reduction of oxidative stress. A review. J Biomed Sci 2000; 7 (6) 444-458
  • 36 Miller MJ, McNeill H, Mullane KM, Caravella SJ, Clark DA. SOD prevents damage and attenuates eicosanoid release in a rabbit model of necrotizing enterocolitis. Am J Physiol 1988; 255 (5 Pt 1) G556-G565
  • 37 Southard JH, Marsh DC, McAnulty JF, Belzer FO. Oxygen-derived free radical damage in organ preservation: activity of superoxide dismutase and xanthine oxidase. Surgery 1987; 101 (5) 566-570
  • 38 Nassi N, Ponziani V, Becatti M, Galvan P, Donzelli G. Anti-oxidant enzymes and related elements in term and preterm newborns. Pediatr Int 2009; 51 (2) 183-187
  • 39 Ozdemir R, Yurttutan S, Sarı FN , et al. Antioxidant effects of N-acetylcysteine in a neonatal rat model of necrotizing enterocolitis. J Pediatr Surg 2012; 47 (9) 1652-1657
  • 40 Guven A, Gundogdu G, Uysal B , et al. Hyperbaric oxygen therapy reduces the severity of necrotizing enterocolitis in a neonatal rat model. J Pediatr Surg 2009; 44 (3) 534-540
  • 41 Guven A, Gundogdu G, Vurucu S , et al. Medical ozone therapy reduces oxidative stress and intestinal damage in an experimental model of necrotizing enterocolitis in neonatal rats. J Pediatr Surg 2009; 44 (9) 1730-1735
  • 42 Kul M, Vurucu S, Demirkaya E , et al. Enteral glutamine and/or arginine supplementation have favorable effects on oxidative stress parameters in neonatal rat intestine. J Pediatr Gastroenterol Nutr 2009; 49 (1) 85-89
  • 43 Reiter RJ, Paredes SD, Manchester LC, Tan DX. Reducing oxidative/nitrosative stress: a newly-discovered genre for melatonin. Crit Rev Biochem Mol Biol 2009; 44 (4) 175-200
  • 44 Mayo JC, Sainz RM, Tan DX , et al. Anti-inflammatory actions of melatonin and its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), in macrophages. J Neuroimmunol 2005; 165 (1-2) 139-149
  • 45 Reiter RJ, Tan DX, Fuentes-Broto L. Melatonin: a multitasking molecule. Prog Brain Res 2010; 181: 127-151
  • 46 Cekmez F, Cetinkaya M, Tayman C , et al. Evaluation of melatonin and prostaglandin E1 combination on necrotizing enterocolitis model in neonatal rats. Regul Pept 2013; 184: 121-125
  • 47 Thor PJ, Krolczyk G, Gil K, Zurowski D, Nowak L. Melatonin and serotonin effects on gastrointestinal motility. J Physiol Pharmacol 2007; 58 (Suppl. 06) 97-103
  • 48 Marseglia L, D'Angelo G, Manti S , et al. Melatonin and atopy: role in atopic dermatitis and asthma. Int J Mol Sci 2014; 15 (8) 13482-13493
  • 49 Kesik V, Guven A, Vurucu S , et al. Melatonin and 1400 W ameliorate both intestinal and remote organ injury following mesenteric ischemia/reperfusion. J Surg Res 2009; 157 (1) e97-e105
  • 50 Paradies G, Petrosillo G, Paradies V, Reiter RJ, Ruggiero FM. Melatonin, cardiolipin and mitochondrial bioenergetics in health and disease. J Pineal Res 2010; 48 (4) 297-310
  • 51 Reiter RJ, Gultekin F, Flores LJ , et al. Melatonin: potential utility for improving public health. TAF Prev Med Bull 2006; 5: 131-158
  • 52 Ersoz N, Ozler M, Altinel O , et al. Melatonin prevents peritoneal adhesions in rats. J Gastroenterol Hepatol 2009; 24 (11) 1763-1767
  • 53 Kim SH, Lee SM. Cytoprotective effects of melatonin against necrosis and apoptosis induced by ischemia/reperfusion injury in rat liver. J Pineal Res 2008; 44 (2) 165-171
  • 54 Cuzzocrea S, Costantino G, Gitto E , et al. Protective effects of melatonin in ischemic brain injury. J Pineal Res 2000; 29 (4) 217-227
  • 55 Cetinkaya M, Alkan T, Ozyener F, Kafa IM, Kurt MA, Koksal N. Possible neuroprotective effects of magnesium sulfate and melatonin as both pre- and post-treatment in a neonatal hypoxic-ischemic rat model. Neonatology 2011; 99 (4) 302-310
  • 56 Guven A, Uysal B, Gundogdu G, Oztas E, Ozturk H, Korkmaz A. Melatonin ameliorates necrotizing enterocolitis in a neonatal rat model. J Pediatr Surg 2011; 46 (11) 2101-2107
  • 57 Gibbs K, Lin J, Holzman IR. Necrotising enterocolitis: the state of the science. Indian J Pediatr 2007; 74 (1) 67-72
  • 58 Berman L, Moss RL. Necrotizing enterocolitis: an update. Semin Fetal Neonatal Med 2011; 16 (3) 145-150
  • 59 Marseglia L, D'Angelo G, Manti S , et al. Oxidative stress-mediated aging during the fetal and perinatal periods. Oxid Med Cell Longev 2014; 2014: 358375
  • 60 Korkmaz A, Reiter RJ, Topal T, Manchester LC, Oter S, Tan DX. Melatonin: an established antioxidant worthy of use in clinical trials. Mol Med 2009; 15 (1-2) 43-50
  • 61 Gitto E, Marseglia L, Manti S , et al. Protective role of melatonin in neonatal diseases. Oxid Med Cell Longev 2013; 2013: 980374
  • 62 Marseglia L, Aversa S, Barberi I , et al. High endogenous melatonin levels in critically ill children: a pilot study. J Pediatr 2013; 162 (2) 357-360
  • 63 Fulia F, Gitto E, Cuzzocrea S , et al. Increased levels of malondialdehyde and nitrite/nitrate in the blood of asphyxiated newborns: reduction by melatonin. J Pineal Res 2001; 31 (4) 343-349
  • 64 Gitto E, Reiter RJ, Cordaro SP , et al. Oxidative and inflammatory parameters in respiratory distress syndrome of preterm newborns: beneficial effects of melatonin. Am J Perinatol 2004; 21 (4) 209-216
  • 65 Gitto E, Romeo C, Reiter RJ , et al. Melatonin reduces oxidative stress in surgical neonates. J Pediatr Surg 2004; 39 (2) 184-189 , discussion 184–189
  • 66 Gitto E, Karbownik M, Reiter RJ , et al. Effects of melatonin treatment in septic newborns. Pediatr Res 2001; 50 (6) 756-760
  • 67 Sánchez-Barceló EJ, Mediavilla MD, Tan DX, Reiter RJ. Clinical uses of melatonin: evaluation of human trials. Curr Med Chem 2010; 17 (19) 2070-2095