Synthesis 2015; 47(16): 2439-2445
DOI: 10.1055/s-0034-1378715
special topic
© Georg Thieme Verlag Stuttgart · New York

Three-Component Photoredox-Mediated Chloro-, Bromo-, or Iodotrifluoromethylation of Alkenes

Aude Carboni
a  Institut de Chimie des Substances Naturelles CNRS, Université Paris-Sud, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
,
Guillaume Dagousset
a  Institut de Chimie des Substances Naturelles CNRS, Université Paris-Sud, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
,
Emmanuel Magnier
b  Institut Lavoisier de Versailles, UMR 8180, Université de Versailles-Saint-Quentin, 78035 Versailles Cedex, France   Email: Geraldine.Masson@cnrs.fr
,
Géraldine Masson*
a  Institut de Chimie des Substances Naturelles CNRS, Université Paris-Sud, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
› Author Affiliations
Further Information

Publication History

Received: 26 March 2015

Accepted after revision: 01 May 2015

Publication Date:
19 June 2015 (online)

Abstract

A mild and simple three-component procedure for the direct vicinal halotrifluoromethylation of styrenes and aliphatic alkenes has been developed in the presence of [Ru(bpy)3](PF6)2 as a photosensitizer and Umemoto’s reagent as the CF3 source. The multicomponent method offers the advantage of short reaction time, moderate to good yields, and mild reaction conditions.

Supporting Information

 
  • References

    • 1a Multicomponent Reactions in Organic Synthesis . Zhu J, Wang Q, Wang MX. Wiley-VCH; Weinheim: 2014

    • For recent reviews, see:
    • 1b Dömling A, Wang S, Wang K. Chem. Rev. 2012; 112: 3083
    • 1c Ruijter E, Scheffelaar R, Orru RV. A. Angew. Chem. Int. Ed. 2011; 50: 6234
    • 1d de Graaff C, Ruijter E, Orru RV. A. Chem. Soc. Rev. 2012; 41: 3969
    • 1e Dömling A. Chem. Rev. 2006; 106: 17
    • 2a Kirsch P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications. Wiley-VCH; Weinheim: 2004
    • 2b Bégué J.-P, Bonnet-Delpon D. Bioorganic and Medicinal Chemistry of Fluorine . Wiley-VCH; Weinheim: 2008
    • 2c Wang J, Sanchez-Rosello M, Luis Acena J, Del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
    • 2d Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
    • 2e Wu X.-F, Neumann H, Beller M. Chem. Asian J. 2012; 7: 1744
    • 2f Ye Y, Sanford MS. Synlett 2012; 23: 2005
    • 2g Liu T, Shen Q. Eur. J. Org. Chem. 2012; 6679
    • 2h Roy S, Gregg BT, Gribble GW, Le V.-D, Roy S. Tetrahedron 2011; 67: 2161
    • 2i Furuya T, Kamlet AS, Ritter T. Nature 2011; 473: 470
    • 2j Tomashenko OA, Grushin VV. Chem. Rev. 2011; 111: 4475
    • 2k Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 2l Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
  • 3 Yang X, Tao W, Phipps RJ, Toste FD. Chem. Rev. 2015; 115: 826

    • For recent reviews on photoredox catalysis, see:
    • 4a Zeitler K. Angew. Chem. Int. Ed. 2009; 48: 9785
    • 4b Yoon TP, Ischay MA, Du J. Nat. Chem. 2010; 2: 527
    • 4c Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 4d Teplý F. Collect. Czech. Chem. Commun. 2011; 47: 859
    • 4e Maity S, Zheng N. Synlett 2012; 23: 1851
    • 4f Xuan J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
    • 4g Tucker JW, Stephenson CR. J. J. Org. Chem. 2012; 77: 1617
    • 4h Shi L, Xia W. Chem. Soc. Rev. 2012; 41: 7687
    • 4i Xi HY. Y, Lei A. Org. Biomol. Chem. 2013; 11: 2387
    • 4j Yoon TP. ACS Catal. 2013; 3: 895
    • 4k Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322 
    • 5a Yasu Y, Koike T, Akita M. Angew. Chem. Int. Ed. 2012; 51: 9567
    • 5b Kim E, Choi S, Kim H, Cho EJ. Chem. Eur. J. 2013; 19: 6209
    • 5c Tomita R, Yasu Y, Koike T, Akita M. Angew. Chem. Int. Ed. 2014; 53: 7144
    • 5d Carboni A, Dagousset G, Magnier E, Masson G. Org. Lett. 2014; 16: 1240
    • 6a Yasu Y, Koike T, Akita M. Org. Lett. 2013; 15: 2136
    • 6b Dagousset G, Carboni A, Magnier E, Masson G. Org. Lett. 2014; 16: 4340
    • 7a Mizuta S, Verhoog S, Engle KM, Khotavivattana T, O’Duill M, Wheelhouse K, Rassias G, Medebielle M, Gouverneur V. J. Am. Chem. Soc. 2013; 135: 2505
    • 7b Wilger DJ, Gesmundo NJ, Nicewicz DA. Chem. Sci. 2013; 4: 3160
    • 8a Xu P, Xie J, Xue Q, Pan C, Cheng Y, Zhu C. Chem. Eur. J. 2013; 19: 14039
    • 8b Carboni A, Dagousset G, Magnier E, Masson G. Chem. Commun. 2014; 50: 14197
    • 9a Nguyen JD, Tucker JW, Konieczynska MD, Stephenson CR. J. J. Am. Chem. Soc. 2011; 133: 4160
    • 9b Wallentin C.-J, Nguyen JD, Finkbeiner P, Stephenson CR. J. J. Am. Chem. Soc. 2012; 134: 8875
    • 9c Oh SH, Malpani YR, Ha N, Jung Y.-S, Han SB. Org. Lett. 2014; 16: 1310
  • 10 Hang Z, Li Z, Liu Z.-Q. Org. Lett. 2014; 16: 3648

    • The other methods of halotrifluoromethylation are mostly related to radical group tranfer and are summarized in the following selected reviews:
    • 11a Ignatowska J, Dmowski W. J. Fluorine Chem. 2007; 128: 997
    • 11b Zhang C.-P, Chen Q.-Y, Guo Y, Xiao J.-C, Gu Y.-C. Chem. Soc. Rev. 2012; 41: 4536
    • 11c Egami H, Sodeoka M. Angew. Chem. Int. Ed. 2014; 53: 8294

      For recent examples of MCRs using photoredox catalysis, see:
    • 12a Rueping M, Vila C. Org. Lett. 2013; 15: 2092
    • 12b Fumagalli G, Boyd S, Greaney MF. Org. Lett. 2013; 15: 4398
    • 12c Wei X.-J, Yang DT, Wang L, Song T, Wu L.-Z, Liu Q. Org. Lett. 2013; 15: 6054
    • 12d Tang J, Yue J.-J, Tao F.-F, Grampp G, Wang B.-X, Li F, Liang X.-Z, Shen Y.-M, Xu J.-H. J. Org. Chem. 2014; 79: 7572
  • 13 Courant T, Masson G. Chem. Eur. J. 2012; 18: 423
  • 14 Nelsen SF, Luo Y, Weaver MN, Lockard JV, Zink JI. J. Org. Chem. 2006; 71: 4286
  • 15 Baghurst DR, Mingos DM. P. J. Chem. Soc., Dalton Trans. 1992; 1151