Planta Med 2014; 80(07): 604-608
DOI: 10.1055/s-0034-1368427
Natural Product Chemistry
Georg Thieme Verlag KG Stuttgart · New York

α-Glucosidase Inhibitory Activities of Isoflavanones, Isoflavones, and Pterocarpans from Mucuna pruriens

Tshewang Dendup
1   Chulabhorn Graduate Institute, Chemical Biology Program, Bangkok, Thailand
Vilailak Prachyawarakorn
2   Chulabhorn Research Institute, Bangkok, Thailand
Acharavadee Pansanit
2   Chulabhorn Research Institute, Bangkok, Thailand
Chulabhorn Mahidol
1   Chulabhorn Graduate Institute, Chemical Biology Program, Bangkok, Thailand
2   Chulabhorn Research Institute, Bangkok, Thailand
Somsak Ruchirawat
1   Chulabhorn Graduate Institute, Chemical Biology Program, Bangkok, Thailand
2   Chulabhorn Research Institute, Bangkok, Thailand
3   Center of Excellence on Environmental Health and Toxicology (EHT), CHE, Ministry of Education, Bangkok, Thailand
Prasat Kittakoop
1   Chulabhorn Graduate Institute, Chemical Biology Program, Bangkok, Thailand
2   Chulabhorn Research Institute, Bangkok, Thailand
3   Center of Excellence on Environmental Health and Toxicology (EHT), CHE, Ministry of Education, Bangkok, Thailand
› Author Affiliations
Further Information

Publication History

received 05 September 2013
revised 07 March 2014

accepted 20 March 2014

Publication Date:
29 April 2014 (online)


Three new isoflavanones (13) and thirteen known compounds (416) were isolated from the roots of Mucuna pruriens. The absolute configurations of isoflavanones 13 and parvisoflavanone (4), lespedeol C (5), and uncinanone C (6) were addressed by a circular dichroism technique. Isoflavanones, isoflavones, and pterocarpans of M. pruriens were found to be α-glucosidase inhibitors. Medicarpin (7) and parvisoflavone B (9) were potent α-glucosidase inhibitors (twofold less active than the standard drug acarbose). The production of bioactive metabolites in M. pruriens seems to be season-dependent.

Supporting Information

  • References

  • 1 Warrier PK, Nambiar VPK, Ramankutty C. Indian medicinal plants: a compendium of 500 species, Vol. IV. Andhra Pradesh, India: Orient BlackSwan; 1995: 128-250
  • 2 Singh AP, Sarkar S, Tripathi M, Rajender S. Mucuna pruriens and its major constituent L-DOPA recover spermatogenic loss by combating ROS, loss of mitochondrial membrane potential and apoptosis. PloS one 2013; 8: e54655
  • 3 Gulati V, Harding IH, Palombo EA. Enzyme inhibitory and antioxidant activities of traditional medicinal plants: potential application in the management of hyperglycemia. BMC Complement Altern Med 2012; 12: 77
  • 4 Champatisingh D, Sahu PK, Pal A, Nanda GS. Anticataleptic and antiepileptic activity of ethanolic extract of leaves of Mucuna pruriens: A study on role of dopaminergic system in epilepsy in albino rats. Indian J Pharmacol 2011; 43: 197-199
  • 5 Kasture S, Pontis S, Pinna A, Schintu N, Spina L, Longoni R, Simola N, Ballero M, Morelli M. Assessment of symptomatic and neuroprotective efficacy of Mucuna pruriens seed extract in rodent model of Parkinsonʼs disease. Neurotox Res 2009; 15: 111-122
  • 6 Katzenschlager R, Evans A, Manson A, Patsalos PN, Ratnaraj N, Watt H, Timmermann L, Van der Giessen R, Lees AJ. Mucuna pruriens in Parkinsonʼs disease: a double blind clinical and pharmacological study. J Neurol Neurosurg Psychiatry 2004; 75: 1672-1677
  • 7 Misra L, Wagner H. Alkaloidal constituents of Mucuna pruriens seeds. Phytochemistry 2004; 65: 2565-2567
  • 8 Ghosal S, Singh S, Bhattacharya SK. Alkaloids of Mucuna pruriens chemistry and pharmacology. Planta Med 1971; 19: 280-284
  • 9 Daxenbichler ME, Kleiman R, Weisleder D, VanEtten CH, Carlson KD. A new amino acid, (−)-1-methyl-3-carboxy-6, 7-dihydroxy-1, 2, 3, 4-tetrahydroisoquinoline, from velvet beans. Tetrahedron Lett 1972; 13: 1801-1802
  • 10 Assumpção RMV, Gottlieb OR. Flavonoids from Poecilanthe parviflora . Phytochemistry 1973; 12: 1188-1191
  • 11 Miyase T, Ueno A, Noro T, Fukushima S. Studies on the constituents of Lespedeza cyrtobotrya M(IQ). II. The structures of haginin C, haginin D and lespedeol C. Chem Pharm Bull 1981; 29: 2205-2209
  • 12 Tsanuo MK, Hassanali A, Hooper AM, Khan Z, Kaberia F, Pickett JA, Wadhams LJ. Isoflavanones from the allelopathic aqueous root exudate of Desmodium uncinatum . Phytochemistry 2003; 64: 265-273
  • 13 Yoon JS, Sung SH, Park JH, Kim YC. Flavonoids from Spatholobus suberectus . Arch Pharm Res 2004; 27: 589-592
  • 14 Hashidoko Y, Tahara S, Mizutani J. New complex isoflavones in the roots of yellow lupin: Lupinus luteus L., cv. Barpine. Agric Biol Chem 1986; 50: 1797-1807
  • 15 Yahara S, Ogata T, Saijo R, Konishi R, Yamahara J, Miyahara K, Nohara T. Isoflavan and related compounds from Dalbergia odorifera. I. Chem Pharm Bull 1989; 37: 979-987
  • 16 Rao CP, Krupadnam GLD. An isoflavan from Millettia racemosa . Phytochemistry 1994; 35: 1597-1599
  • 17 El-Sebakhy NA, Asaad AM, Abdallah RM, Toaima SM, Abdel-Kader MS, Stermitz FR. Antimicrobial isoflavans from Astragalus species. Phytochemistry 1994; 36: 1387-1389
  • 18 de Rijke E, de Kanter F, Ariese F, Brinkman UAT, Gooijer C. Liquid chromatography coupled to nuclear magnetic resonance spectroscopy for the identification of isoflavone glucoside malonates in T. pratense L. leaves. J Sep Sci 2004; 27: 1061-1070
  • 19 Herath HMTB, Dassanayake RS, Priyadarshani AMA, De Silva S, Wannigama GP, Jamie J. Isoflavonoids and a pterocarpan from Gliricidia sepium . Phytochemistry 1998; 47: 117-119
  • 20 Máximo P, Lourenço A, Feio SS, Roseiro JC. A new prenylisoflavone from Ulex jussiaei . Z Naturforsch C 2002; 57: 609-613
  • 21 Slade D, Ferreira D, Marais JP. Circular dichroism, a powerful tool for the assessment of absolute configuration of flavonoids. Phytochemistry 2005; 66: 2177-2215
  • 22 Zhao M, Duan JA, Che CT. Isoflavanones and their O-glycosides from Desmodium styracifolium . Phytochemistry 2007; 68: 1471-1479
  • 23 Tanaka H, Hirata M, Etoh H, Sako M, Sato M, Murata J, Murata H, Darnaedi D, Fukai T. Six new constituents from the roots of Erythrina variegata . Chem Biodivers 2004; 1: 1101-1108
  • 24 Choi CW, Choi YH, Cha MR, Yoo DS, Kim YS, Yon GH, Hong KS, Kim YH, Ryu SY. Yeast α-glucosidase inhibition by isoflavones from plants of Leguminosae as an in vitro alternative to acarbose. J Agric Food Chem 2010; 58: 9988-9993
  • 25 Wang QQ, Cheng N, Yi WB, Peng SM, Zou XQ. Synthesis, nitric oxide release, and α-glucosidase inhibition of nitric oxide donating apigenin and chrysin derivatives. Bioorg Med Chem 2014; 22: 1515-1521
  • 26 Wu Y, Yang JH, Dai GF, Liu CJ, Tian GQ, Ma WY, Tao JC. Stereoselective synthesis of bioactive isosteviol derivatives as α-glucosidase inhibitors. Bioorg Med Chem 2009; 17: 1464-1473
  • 27 Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res 1987; 47: 936-942